Surname		
Sumane	Other r	names
	Centre Number	Candidate Number
Edexcel GCE		
Chemistry Advanced	y	
	ciples of Chemist d Further Organi noptic assessme	ic Chemistry
Equilibria and	d Further Organi noptic assessme	ic Chemistry nt) Paper Reference
Equilibria and (including sy	d Further Organi noptic assessme 10 – Morning	ic Chemistry nt)

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

edexcel advancing learning, changing lives

©2010 Edexcel Limited.

7/7/5/5/2/

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.

1 Consider the equilibrium

$$Cl_2(g) + PCl_3(g) \implies PCl_5(g)$$

Which of the following is true when the total pressure of the system is increased at constant temperature?

		Value of K_p	Mole fraction of PCl ₅ (g)
\times	Α	decreases	decreases
\mathbf{X}	В	unaltered	increases
\mathbf{X}	С	decreases	increases
\times	D	unaltered	unaltered

(Total for Question 1 = 1 mark)

2 In which of the following reactions is nitric acid acting as a base?

 $\square A HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$

 $\square \quad \mathbf{B} \quad \mathrm{HNO}_3 + \mathrm{H}_2\mathrm{O} \quad \rightarrow \mathrm{H}_3\mathrm{O}^+ + \mathrm{NO}_3^-$

- $\square \quad \mathbf{C} \quad \mathrm{HNO}_3 + \mathrm{H}_2\mathrm{SO}_4 \quad \rightarrow \ \mathrm{H}_2\mathrm{NO}_3^+ + \mathrm{HSO}_4^-$
- \square **D** HNO₃ + NaHCO₃ \rightarrow NaNO₃ + H₂O + CO₂

(Total for Question 2 = 1 mark)

- **3** Why does phenolphthalein, which is colourless in acidic solutions, turn pink in alkaline solutions?
 - A It is oxidized to a pink compound by hydroxide ions.
 - \square **B** It forms a pink anion by loss of H⁺ ions.
 - \square C It forms a pink anion by gain of H⁺ ions.
 - **D** It forms a pink cation by gain of H^+ ions.

(Total for Question 3 = 1 mark)

4	The	disso	ociation of ethanoic acid in aqueous solution is represented by
			$CH_3COOH(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$
	Whie	ch of	The following statements is true for this equilibrium?
	\times	A	CH ₃ COOH is an acid and its conjugate base is CH ₃ COO ⁻ .
	\mathbf{X}	B	H ₂ O is an acid and its conjugate base is OH ⁻ .
	×	С	At equilibrium, the concentrations of each substance are the same.
	\mathbf{X}	D	At equilibrium, the reaction from left to right and the reaction from right to left have stopped.
			(Total for Question 4 = 1 mark)
5	Why	are	aqueous solutions of sodium ethanoate slightly alkaline?
	\mathbf{X}	A	The sodium ions react with water to give an alkali.
	\mathbf{X}	B	The ethanoate ions react with water to give hydroxide ions.
	\times	С	All sodium salts give alkaline solutions.
	\times	D	The sodium ethanoate is fully ionized in solution.
			(Total for Question 5 = 1 mark)
6	Whe	n an	monium nitrate crystals dissolve in water, the entropy of the system
	\times	A	remains the same.
	\times	B	falls, because the hydrated ions are more ordered than the solid.
	\times	С	rises, because the ions in the crystal become hydrated in the solution.
	X	D	rises, because the ions are arranged more randomly in the solution than in the crystal.
			(Total for Question 6 = 1 mark)
	Use	this	space for any rough working. Anything you write in this space will gain no credit.
	0.50	UIIIG	space for any rough working. Anything you write in this space will gain no create

	X	Α	CH ₃ COOCH ₂ CH ₃
	\times	В	HCOOCH ₃
	\times	С	CH ₃ COCH ₂ CH ₃
	×	D	CH ₃ COCl
			(Total for Question 7 = 1 mar
8	vari be r	ous nost	the preparation of a liquid compound, samples were taken of the product at stages in the purification procedure. Which of the following techniques would suitable for showing the change in composition of these samples during the tion procedure?
	\times	A	Gas-liquid chromatography
	\times	B	Fractional distillation
	\times	С	Filtration
	\times	D	Distillation
			(Total for Question 8 = 1 mar
9	(lith	nium	of the following compounds would react with lithium tetrahydridoaluminate aluminium hydride) and also with phosphorus(V) chloride (phosphorus loride)?
	X	A	CH ₃ CH ₂ CH ₂ COOH
	×	B	CH ₃ CH ₂ COCH ₃
	×	С	CH ₃ CH=CHCH ₃
		D	CH ₂ =CHCH ₂ CH ₂ OH
	\times		

This	is be	ecause the reaction between
\mathbf{X}	A	an acyl chloride and an alcohol is an equilibrium.
\mathbf{X}	B	an acid and an alcohol goes to completion.
\mathbf{X}	С	an acid and an alcohol requires a catalyst.
\times	D	an acyl chloride and an alcohol goes to completion.
		(Total for Question 10 = 1 mark)
l Not	all m	olecules will absorb infrared radiation. Those that do
\mathbf{X}	A	change their dipole moment when their bonds stretch or bend.
\mathbf{X}	B	undergo homolytic fission.
\times	С	must be polar.
\mathbf{X}	D	are always organic substances.
		(Total for Question 11 = 1 mark)
2 Whi	ch of	the following methods may be used in a single step to make carboxylic acids?
\mathbf{X}	A	Hydrolysis of an ester with an alkali.
\mathbf{X}	B	Reaction of acidified potassium manganate(VII) with an alkene.
\mathbf{X}	С	Hydrolysis of a nitrile with hydrochloric acid.
\mathbf{X}	D	Reaction of an acyl chloride with ammonia.
		(Total for Question 12 = 1 mark)

|____

 Which of the following reagents could be used to produce propanamide, CH₃CH₂CONH₂? A Ammonia and 1-chloropropane B Ammonia and propanoyl chloride C Methylamine and 1-chloropropane D Methylamine and propanoyl chloride 		Α	the pH change is too gradual close to the equivalence point.
 D the pH change occurs outside the range of any indicator. (Total for Question 13 = 1) Which of the following reagents could be used to produce propanamide, CH₃CH₂CONH₂? A Ammonia and 1-chloropropane B Ammonia and propanoyl chloride C Methylamine and 1-chloropropane D Methylamine and propanoyl chloride C Methylamine and propanoyl chloride 	\times	B	there are too few H ⁺ ions to affect the indicator.
 (Total for Question 13 = 1) (Total for Question 13 = 1) Which of the following reagents could be used to produce propanamide, CH₃CH₂CONH₂? A Ammonia and 1-chloropropane B Ammonia and propanoyl chloride C Methylamine and 1-chloropropane D Methylamine and propanoyl chloride (Total for Question 14 = 1) 	\mathbf{X}	С	there are too few OH ⁻ ions to affect the indicator.
 Which of the following reagents could be used to produce propanamide, CH₃CH₂CONH₂? A Ammonia and 1-chloropropane B Ammonia and propanoyl chloride C Methylamine and 1-chloropropane D Methylamine and propanoyl chloride 	\mathbf{X}	D	the pH change occurs outside the range of any indicator.
 CH₃CH₂CONH₂? A Ammonia and 1-chloropropane B Ammonia and propanoyl chloride C Methylamine and 1-chloropropane D Methylamine and propanoyl chloride (Total for Question 14 = 1)			(Total for Question 13 = 1 mark)
 B Ammonia and propanoyl chloride C Methylamine and 1-chloropropane D Methylamine and propanoyl chloride (Total for Question 14 = 1) 			
 C Methylamine and 1-chloropropane D Methylamine and propanoyl chloride (Total for Question 14 = 1) 		A	Ammonia and 1-chloropropane
D Methylamine and propanoyl chloride (Total for Question 14 = 1)		B	Ammonia and propanoyl chloride
	\mathbf{X}	С	Methylamine and 1-chloropropane
	×	D	Methylamine and propanoyl chloride
15 The radio waves used in proton nmr			(Total for Question 14 = 1 mark)
	The r	radi	o waves used in proton nmr
A must not be absorbed by the sample.		A	must not be absorbed by the sample.
B cause electron transitions in the hydrogen atom.		B	cause electron transitions in the hydrogen atom.
\square C can only be used with organic substances.	\mathbf{X}	С	can only be used with organic substances.
D cause the hydrogen nucleus to change its spin state.	\mathbf{X}	D	cause the hydrogen nucleus to change its spin state.
(Total for Question $15 = 1$			(Total for Question 15 = 1 mark)

17 Which of the following changes will lead to the greatest increase in the **rate** of the following endothermic reaction?

		$N_2(g) + O_2(g)$	\rightarrow 2NO(g) ΔH +ve
		Temperature	Initial concentration of N_2 and O_2
×	Α	decrease by 15%	decrease by 15%
×	В	increase by 15%	stay the same
×	С	decrease by 15%	increase by 15%
X	D	increase by 15%	increase by 15%

18 The repeat unit of the polyester formed from ethane-1,2-diol, HOCH₂CH₂OH, and

(Total for Question 18 = 1 mark)

19 Iron and steam at high temperature react in a closed vessel to give an equilibrium mixture

 $3Fe(s) + 4H_2O(g) \implies Fe_3O_4(s) + 4H_2(g)$

Which of the following is the correct expression for K_p ?

 $\square \quad \mathbf{A} \quad K_{\mathrm{p}} = \frac{P_{\mathrm{H}_2}}{P_{\mathrm{H}_2\mathrm{O}}}$ **B** $K_{\rm p} = \frac{P_{\rm Fe_3O_4}P_{\rm H_2}^4}{P_{\rm Fe}^3 P_{\rm H_2O}^4}$ **C** $K_{\rm p} = \frac{P_{\rm H_2}^4}{P_{\rm H_2O}^4}$ $\square \quad \mathbf{D} \quad K_{\mathrm{p}} = P_{\mathrm{H}_2}^4$ (Total for Question 19 = 1 mark) 20 At 100 °C, pure water has a pH of 6, whereas at 25 °C it has a pH of 7. This is because the dissociation of water is endothermic, so the concentration of hydrogen 🖂 A ions is lower at 100 °C than it is at 25 °C. B the dissociation of water is exothermic, so the concentration of hydrogen ions \mathbf{X} is lower at 100 °C than it is at 25 °C. С the dissociation of water is endothermic, so the concentration of hydrogen \mathbf{X} ions is higher at 100 °C than it is at 25 °C. D at 100 °C, water has a higher concentration of hydrogen ions than of \times hydroxide ions. (Total for Question 20 = 1 mark) **TOTAL FOR SECTION A = 20 MARKS**

			SECTION B	
			Answer ALL the questions. Write your answers in the spaces provided.	
21	(a)	(i)	Define pH .	(1)
		(ii)	Calculate the pH of 0.0100 mol dm ⁻³ hydrochloric acid, which is a strong acid.	(1)
	(b)	Eth 1.7: (i)	anoic acid is a weak acid with an acid dissociation constant, K_{a} , of value 5×10^{-5} mol dm ⁻³ at 25 °C. Calculate the pH of 0.0100 mol dm ⁻³ ethanoic acid at 25 °C, stating any ONE assumption that you have made.	(4)
٨٥	011122			

	pH of 0.00100 mol dm ⁻³ solution	pH of 0.000100 mol dm ⁻³ solution
Hydrochloric acid	3.0	4.0
Ethanoic acid	3.9	4.4
one unit. Suggest why ethe	anoic acid behaves differently.	(2)
the fruit in the marmalade, it for		
the fruit in the marmalade, it for mould growth.	rms a buffer solution which, at	a suitable pH, inhibits
Orange marmalade usually cont the fruit in the marmalade, it for mould growth. (i) Define the term buffer solu	rms a buffer solution which, at	
the fruit in the marmalade, it for mould growth.	rms a buffer solution which, at	a suitable pH, inhibits
the fruit in the marmalade, it for mould growth.	rms a buffer solution which, at	a suitable pH, inhibits

|____

(iii) Explain how a buffer solution works using t choice. Support your explanation with equa	this system or any other of your ations.	(4)
		• •
	(Total for Question 21 = 15 r	narks)

BLANK PAGE

22 *(a)	Ethanol can be oxidized successively to ethanal and to ethanoic acid.	
	The boiling temperatures of these substances are: ethanol 78 °C, ethanal 21 °C, ethanoic acid 118 °C.	
	Explain in terms of the intermolecular forces in the liquids why the order of the boiling temperature is	
	ethanal < ethanol < ethanoic acid	
		(3)
	State what tests you would perform in each case, and the result you would expect, t show that	0
	(i) ethanal contains a carbonyl group.	
		(2)
	(ii) ethanal is an aldehyde.	(2)

(i) Give the mechanism for this reaction.	
	(3)
(ii) Explain why it is passagery to use HCN and KCN in this repetion rather th	07
(ii) Explain why it is necessary to use HCN and KCN in this reaction, rather th HCN on its own.	all
	(1)
*(iii) Explain why the product mixture from this reaction is not optically active.	
(iii) Explain why the product inixture from this reaction is not optically active.	(2)

|____

23 Iodine and propanone react in the presence of an aqueous acid catalyst as follows	
$CH_3COCH_3 + I_2 \rightarrow CH_3COCH_2I + HI$	
To determine the rate equation for the reaction, propanone is reacted with iodine in the presence of aqueous hydrochloric acid at constant temperature. Samples are withdrawn at known times, quenched with sodium hydrogencarbonate solution, and the iodine remaining titrated with a standard solution of sodium thiosulfate.	
The rate equation for the reaction is	
rate = $k [CH_3COCH_3]^1 [H^+]^1 [I_2]^0$	
(a) The graph of $[I_2]$ against time is a straight line, showing that the order of reaction with respect to iodine is zero.	
(i) Explain why the propanone and the hydrogen ions must be in large excess in this experiment in order to give this straight line.	
	(2)
(ii) What further experiment could be done to show that the order of reaction with respect to propanone is one? State the effect of this change on the graph.	(2)

(iii)	Explain why the minimum number of steps in the mechanism for this reac two.	tion is
		(2)
Sod	ium hydrogencarbonate stops the reaction by neutralizing the acid catalyst.	
(i)	Give the ionic equation for the reaction between sodium hydrogencarbonar acid.	te and
		(1)
(ii)	Sodium hydroxide cannot be used for neutralization because under very al conditions a reaction occurs between propanone and iodine.	kaline
	Write the equation for this reaction. State symbols are not required.	(3)
		(5)
	(Total for Question 23 = 1	0 marks)

l

Rea	ction I	$CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$	$\Delta H = +\ 210 \text{ kJ mol}^{-1}$	
Rea	ction II	$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$	$\Delta H = -42 \text{ kJ mol}^{-1}$	
a) Writ	te the expres	ssion for the equilibrium constant, K_{p} , for re-	eaction I.	(1)
cata	lyst.	rs at a temperature of 1000 K and a pressur xplain the effect, if any, on the value of K_p tion.		
cata	lyst. State and ex	xplain the effect, if any, on the value of $K_{\rm p}$		re
cata (i)	lyst. State and er on the react Explain, in	xplain the effect, if any, on the value of $K_{\rm p}$	of increasing the pressu	re

(iii) Increasing the pressure on this heterogeneously-catalysed reaction I has very little effect on the rate of the reaction. Suggest why this is so.

(2)

(c) The expression for K_p for reaction II is

$$K_{\rm p} = \frac{P_{\rm CO_2} P_{\rm H_2}}{P_{\rm CO} P_{\rm H_2O}}$$

At a particular temperature and 30 atm pressure, a mixture of equal amounts of carbon monoxide and steam react to give an equilibrium mixture where 75 % of the CO has reacted.

Calculate the value of K_p showing your working.

(3)

	(Total for Question 24 = 12 ma	1>
Sug	ggest why, apart from insufficient reaction time, this is so.	(1)
rare	hough industrial processes are often discussed in terms of equilibria, they are ely allowed to reach equilibrium.	
	State symbols are not required.	(1)
(ii)	Write the equation for the thermal decomposition of potassium hydrogencarbon	iate.
		(1)
	Explain why its manufacture using reactions I and II does not support this claim.	(1)
(i)	Hydrogen is often claimed to be a non-polluting fuel as it only produces water on burning.	
	on burning.	

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

25 The oxidation of iron metal in the presence of oxygen is spontaneous.

 $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$

(a) Explain the meaning of **spontaneous** in a thermodynamic context.

(1)

(b) (i) Find the values of the standard molar entropies of iron and of iron(III) oxide from your data booklet.

(1)

(ii) The standard molar entropy at 298 K for oxygen molecules O_2 is +205 J mol⁻¹ K⁻¹.

Calculate the standard entropy change of the system for the reaction between iron and oxygen. Include a sign and units in your answer.

(2)

(iii) The standard enthalpy change for the reaction at 25 °C is -1648 kJ mol⁻¹.

Calculate $\Delta S_{\text{surroundings}}$.

change for the reaction. Include a sign and units in your answer.	(2)
*(v) The reaction is thermodynamically spontaneous.	
Use your answers to (b)(ii), (iii) and (iv) to explain, in terms of the physical states of the substances in the reaction and the movement of the molecules in the surroundings, why this is so.	
	(3)
(Total for Question 25 = 10 ma	irks)

these structures.							
		(6)					

BLANK PAGE

BLANK PAGE

0 (8) (18)	4.0 H e ^{helium}	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr	кгурцон 36	131.3	Xenon 54	[222]	Rn 86	ed	
~	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br	35 35	126.9	l iodine 53	[210]	At astatine 85	Elements with atomic numbers 112-116 have been reported but not fully authenticated	175 Lu lutetium 71 [257] Lr lawrencium 103
ø	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se	setenium 34	127.6	Te tellurium 52	[209]	Po polonium 84	116 have b nticated	173 Yb 70 70 [254] No 102
2	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15		arsenic 33	121.8	Sb antimony 51	209.0	Bi ^{bismuth} 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69 [256] Md mendelevium 101
4	(14)	12.0 C carbon 6	sil 2	72.6 Ge	germannum 32	118.7	5 0 tin 50 tin	207.2	Pb ^{lead} 82	atomic nu but not f	167 Er erbium 68 [253] Fm fermium 100
ĸ	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga	gaunum 31	114.8	indium 49	204.4	TI thallium 81	nents with	163 165 163 165 Dy Ho dysprosium hotmium 66 67 67 Es Cf Es 98 99
ients			(12)	65.4 Zn	zinc 30	112.4	Cd cadmium 48	200.6	Hg ^{mercury} 80		163 Dy dysprosium 66 [251] Cf catifornium 98
Elem			(11)	63.5 Cu	copper 29		Ag silver 47	197.0	Bold 79	[272] Rg roentgenium 111	159 Tb terbium 65 [245] Bk berkelium 97
le or			(10)	58.7 Ni	nickel 28	106.4	Pd palladium 46	195.1	Pt _{platinum} 78	[271] DS Jamstadtium 110	157 Gd gadolinium 64 [247] Cm 96
c lad			(6)	58.9 Co	cobalt 27	102.9	Rh rhodium 45	192.2	Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63 [243] Am americium 95
Ine Periodic ladie of Elements	hydrogen		(8)		1ron 26	101.1	Ru ruthenium 44	190.2	Os osmium 76	[277] HS hassium 108	[147] 150 152 Pm Sm Eu promethium samarium europium 61 62 63 737] [242] [243] Np Pu Am neptunium plutonium americium 93 94 95
а ап			ĺ)	54.9 Mn	chromium manganese 24 25	[86]	Mo TC molybdenum 42 43	186.2	Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61 [237] Np neptunium 93
=		mass bol umber	(9)	52.0 Cr	chromium 24	95.9	MO molybdenum 42	183.8	tungsten 74	[266] Sg seaborgium 106	141 144 Pr Nd prasedomium neodymium 59 60 [231] 238 Pa U protactinium urranium 91 92
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 	vanadium 23	92.9	Nb niobium 41	180.9	Ta tantalum 73	[262] Db dubnium 105	141 Pr 59 [231] Pa protactinium 91
		relati ato atomic	(4)	47.9 Ti	titanium 22	91.2	Zr zirconium 40	178.5	Hf hafnium 72	[261] Rf rutherfordium 104	140 Cerium 58 232 232 thorium 90
			(3)	45.0 Sc	scandium 21	88.9	yttrium 39	138.9	La* lanthanum 57	[227] AC* actinium 89	<i>к</i>
7	(2)	9.0 Be berytlium 4	24.3 Mg magnesium 12	Ca	calcium 20	87.6	Sr strontium 38	137.3	Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 X	potassium 19	85.5	Rb rubidium 37	132.9	CS caesium 55	[223] Fr francium 87	* Lanth * Actini

- 1