| Please check the examination details below | before entering your can | didate information | |--|--------------------------|--------------------| | Candidate surname | Other name | S | | Pearson Edexcel Level 1/Level 2 GCSE (9–1) | e Number | Candidate Number | | Tuesday 14 May | 2019 | | | Afternoon (Time: 1 hour 45 minutes) | Paper Reference 1 | BIO/1H | | Biology Paper 1 | | | | | | Higher Tier | | You must have:
Calculator, ruler | | Total Marks | #### Instructions - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided there may be more space than you need. - Calculators may be used. - Any diagrams may NOT be accurately drawn, unless otherwise indicated. - You must **show all your working out** with **your answer clearly identified** at the **end of your solution**. #### Information - The total mark for this paper is 100. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate. ## Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ P56432A ©2019 Pearson Education Ltd. 1/1/1/1/1/1/1/ DO NOT WRITE IN THIS AREA ### Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . 1 (a) A student had solutions of four different foods labelled W, X, Y and Z. Each solution was tested for starch and protein. The colour of the solutions after the tests are shown in Figure 1. | solution | colour after testing
for starch | colour after testing
for protein | |----------|------------------------------------|-------------------------------------| | W | orange | purple | | X | blue/black | purple | | Υ | blue/black | blue | | Z | orange | blue | Figure 1 | i) | Which solution | contains starch | but not protein? | | |----|----------------|-----------------|-------------------------|--| |----|----------------|-----------------|-------------------------|--| (1) - A solution W - **B** solution X - C solution Y - D solution Z | /**\ | Describe how a | 1 | | | | | | |---------|-----------------|-----------|---------|---------|--------|--------------|-----------| | (111) | I Decrine how a | COLLITION | Of tood | can no | TACTAC | tor reducin | a cliaarc | | \ I I I | DESCRIBE HOW O | SOIGHOLL | OI IOOG | Call DC | iesteu | TOT LEGICITI | u suuais. | | | | | | | | | | | - | | |---|--| | | | | | | | | | |
 |
 | | |
 |
 |
 |
 |
 | | |------|------|-------|-------|------|------|------|------|------|--| |
 |
 | | |
 |
 |
 |
 |
 | | |
 |
 | | |
 |
 |
 |
 |
 | | | | | | | | | | | | | |
 |
 | ••••• | ••••• |
 |
 |
 |
 |
 | | |
 |
 | | |
 |
 |
 |
 |
 | | |
 |
 | | |
 |
 |
 |
 |
 | | 2 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (b) Figure 2 shows a calorimeter. Figure 2 Describe how this calorimeter can be used to find the energy content of 10 g of food. (3) (Total for Question 1 = 6 marks) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 2 (a) A scientist obtained a mass of 0.0062 nanograms of DNA from a diploid human cell. Calculate the mass of DNA the scientist should obtain from a haploid human cell. Give your answer in picograms. (1 nanogram = 1000 picograms) (2)picograms (b) A student used the method shown in Figure 3 to compare the mass of DNA extracted from strawberry fruit cells and from kiwi fruit cells. Figure 3 (i) State why ethanol is used. (1) DO NOT WRITE IN THIS AREA | | (2) | |--|----------------------------------| | | | | | | | | | | | | | | | | (iii) The student repeated the experiment | | | Give one reason why. | (1) | | | | | | | | | | | | | |) Mitosis and meiosis are processes that pro | oduce new cells. | | Compare the outcomes of mitosis and me | | | | (3) | (Total for Question 2 = 9 marks) | | | (Total for Question 2 – 9 marks) | | | | | | | | | | DO NOT WRITE IN THIS AREA | 3 | (a) Clostridium tetani is a bacterium that can be found in soil. | | |---|--|--------| | 3 | | | | | It causes the infection tetanus. | | | | Children are vaccinated against tetanus. | | | | Explain why these children do not get tetanus if the bacteria enter their body | | | | through a cut in the skin. | (3) | (b) Colistin is an antibiotic used to treat infections in the bloodstream. | | | | Some bacteria are resistant to Colistin. | | | | Explain how these bacteria have become resistant to Colistin. | | | | Explain flow these bacteria have become resistant to constin. | (4) | /T-4-1 for Occopion 2 = 7 | | | | (Total for Question 3 = 7 | marks) | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA # **BLANK PAGE** DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA **4** (a) The effect of age on focusing distance was investigated. Volunteers of different ages had their eyes tested. Each volunteer was asked to read words from a book. The book was moved closer to their eyes. When the words became out of focus, the distance was recorded. Figure 4 shows the results. | | | distance (mm) | | mean distance | |-------------------|----------|---------------|----------|---------------| | age of volunteers | person 1 | person 2 | person 3 | (mm) | | 40 | 256 | 261 | 257 | 258 | | 45 | 282 | 275 | 280 | 279 | | 50 | 292 | 301 | 297 | ? | | 55 | 311 | 309 | 307 | 309 | Figure 4 (i) Calculate the mean distance for the volunteers aged 50. Give your answer to three significant figures. (3) | (ii) Give one conclusion that can be made from the data in Figure 4. | | |---|-----| | | (1) | | | | 8 DO NOT WRITE IN THIS AREA | (iii) Give two improvements that are needed in this investigation before a valid conclusion can be made. | (2) | |---|-----| | | | | 2 | | | 2 | | | (b) Which part of the eye detects coloured light? | (1) | | | | | ☑ B lens | | | | | | □ D cornea | | | (c) Figure 5 shows light rays entering the eye of a person with normal vision. | | | Figure 5 | | | (i) Describe how light rays are focused to give normal vision. | (2) | | | | | | | | | | | | | | | | | | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (ii) Figure 6 shows light rays entering the eye of a person with an eye defect and two lenses that can be used to correct eye defects. lens X Explain which lens would correct the eye defect shown in Figure 6. (2) lens Y (Total for Question 4 = 11 marks) DO NOT WRITE IN THIS AREA | A Eukarya B Archaea C Monera D Protista (ii) Plant cells contain chloroplasts. What happens in a chloroplast? A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | A Eukarya B Archaea C Monera D Protista (ii) Plant cells contain chloroplasts. What happens in a chloroplast? A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | (i) | Wh | nat is the name of the domain | n that plants belong to? | (1) | |--|--|------|----------|--------------------------------|-----------------------------------|-----| | C Monera D Protista (ii) Plant cells contain chloroplasts. What happens in a chloroplast? A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | C Monera D Protista (ii) Plant cells contain chloroplasts. What happens in a chloroplast? A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | X | Α | Eukarya | | (1) | | ☑ D Protista (ii) Plant cells contain chloroplasts. What happens in a chloroplast? ✓ A oxygen produced sunlight absorbed by chlorophyll ☑ B carbon dioxide produced sunlight absorbed by mitochondria ✓ C oxygen produced sunlight absorbed by mitochondria ✓ D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | ☑ D Protista (ii) Plant cells contain chloroplasts. What happens in a chloroplast? ☑ A oxygen produced sunlight absorbed by chlorophyll ☑ B carbon dioxide produced sunlight absorbed by mitochondria ☑ C oxygen produced sunlight absorbed by mitochondria ☑ D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | X | В | Archaea | | | | (ii) Plant cells contain chloroplasts. What happens in a chloroplast? ✓ A oxygen produced sunlight absorbed by chlorophyll ✓ B carbon dioxide produced sunlight absorbed by mitochondria ✓ C oxygen produced sunlight absorbed by mitochondria ✓ D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | (ii) Plant cells contain chloroplasts. What happens in a chloroplast? ✓ A oxygen produced sunlight absorbed by chlorophyll ✓ B carbon dioxide produced sunlight absorbed by mitochondria ✓ C oxygen produced sunlight absorbed by mitochondria ✓ D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | × | C | Monera | | | | What happens in a chloroplast? A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | What happens in a chloroplast? A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | × | D | Protista | | | | A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | A oxygen produced sunlight absorbed by chlorophyll B carbon dioxide produced sunlight absorbed by mitochondria C oxygen produced sunlight absorbed by mitochondria D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | (ii) | Pla | nt cells contain chloroplasts. | | | | ■ B carbon dioxide produced sunlight absorbed by mitochondria ■ C oxygen produced sunlight absorbed by mitochondria ■ D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | ■ B carbon dioxide produced sunlight absorbed by mitochondria ■ C oxygen produced sunlight absorbed by mitochondria ■ D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | | Wh | nat happens in a chloroplast? | | (1) | | ☑ C oxygen produced sunlight absorbed by mitochondria ☑ D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | C oxygen produced sunlight absorbed by mitochondria D carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | × | A | oxygen produced | sunlight absorbed by chlorophyll | | | carbon dioxide produced sunlight absorbed by chlorophyll (iii) Give a reason why the three domain method of classification has been suggested. | carbon dioxide produced sunlight absorbed by chlorophyll Give a reason why the three domain method of classification has been suggested. | × | В | carbon dioxide produced | sunlight absorbed by mitochondria | | | (iii) Give a reason why the three domain method of classification has been suggested. | (iii) Give a reason why the three domain method of classification has been suggested. | _ | | | | | | suggested. | suggested. | × | c | oxygen produced | sunlight absorbed by mitochondria | | | | | | | | | | | | | × | D | carbon dioxide produced | sunlight absorbed by chlorophyll | | | | | × | D | carbon dioxide produced | sunlight absorbed by chlorophyll | | | | | × | D | carbon dioxide produced | sunlight absorbed by chlorophyll | | (b) Figure 7 shows a cyanobacterium magnified 50 000 times. The line AB shows the diameter of the bacterial cell. (Source: © The Christian Science Monitor) Figure 7 (i) Calculate the actual diameter of the cyanobacterium. Give your answer in micrometres (μ m). (3) | (ii) | Bacterial cells contain plasmids. | | |------|---|-----| | | Describe three other features of a bacterial cell. | (3) | | | | | | | | | | | | | | | | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (c) Figure 8 shows a plasmid containing the human insulin gene. Figure 8 | Explain how the human insulin gene can be inserted into a plasmid. | (3) | |--|-----| | | | | | | | | | | | | | | | | | | (Total for Question 5 = 12 marks) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA **6** (a) Lactase is an enzyme that breaks down lactose into glucose and galactose. A student made some alginate beads containing lactase. The student added 10 beads to 20 cm³ of a solution of lactose, as shown in Figure 9. The student timed how long it took for glucose to be produced. The experiment was repeated using 15, 20 and 25 beads. Figure 9 The results are shown in Figure 10. | number of beads
containing lactase | time taken to produce
glucose in seconds | |---------------------------------------|---| | 10 | 240 | | 15 | 210 | | 20 | 150 | | 25 | 120 | Figure 10 (i) What is the rate of reaction for 25 beads? (1) - A 0.008 s⁻¹ - $lackbox{B}$ 0.04 s⁻¹ - \triangle **C** 0.21 s⁻¹ - \triangle **D** 4.8 s⁻¹ DO NOT WRITE IN THIS AREA | (ii) Explain the conclusion that can be made from these results. | (3) | |---|--------| | | | | | | | | | | (iii) Explain why the same volume of lactose solution was used for each test. | (2) | | | | | (b) Devise a method to find the optimum temperature for the enzyme lactase. | (3) | | | | | | | | | | | | | | (Total for Question 6 = 9 r | marks) | DO NOT WRITE IN THIS AREA | 7 | Measles is a disease caused by a virus. | | |---|--|-----| | | (a) Describe the lytic pathway for a virus. | (3) | (b) A measles infection can cause inflammation of the brain. | | | | Figure 11 shows a brain. | | | | Figure 11 | | | | (i) Name the part of the brain labelled X. | (1) | | | | | DO NOT WRITE IN THIS AREA | (Total for Question 7 = 1 | l1 marks) | |---|-----------| | | | | | | | Describe herd immunity. | (2) | | (ii) The spread of measles is prevented by herd immunity. | | | | | | | | | | | | (i) State two reasons why people might not be immunised against measles. | (2) | | c) Measles is prevented by immunisation. | | | | pec | | | | | | | | Give your answer in standard form. | (3) | | Calculate the number of people infected with measles in 2015. | | | | | **8** (a) LDL cholesterol is a type of cholesterol which increases the risk of heart disease. Statins are drugs used to reduce LDL cholesterol levels. Figure 12 shows the cholesterol levels in the blood of a man. He started taking statins at the beginning of February and stopped taking them four months later. Figure 12 (i) Describe the effect of statins on LDL cholesterol levels in the blood.Use data from the graph to support your answer. DO NOT WRITE IN THIS AREA | (ii) Use evidence from the graph to explain why statins are usually pre life-long medication. | scribed as (2) | |---|----------------| | | | | | | | | | | | | | | | | (b) Which data can be used to calculate the man's BMI? | (1) | | ☑ A waist circumference and height | | | ■ B waist circumference and hip circumference | | | □ C mass and height | | | ☑ D mass and hip circumference | | (6) DO NOT WRITE IN THIS AREA *(c) Gonorrhoea is a sexually transmitted bacterial infection. Figure 13 shows the number of people diagnosed with gonorrhoea in the UK. Figure 13 Explain how gonorrhoea is transmitted and how the number of people infected can be reduced. Use data from the graph to justify why it is necessary to reduce the number of people infected. |
 |
 | | |------|------|--| | | | | | |
 | | |
 |
 | | | |
 | | | | | | 20 DO NOT WRITE IN THIS AREA | (Total for Question 8 = 11 marks) | |-----------------------------------| DO NOT WRITE IN THIS AREA | 9 | | | ion and translation are stages in the synthesis of proteins. nich enzyme is involved in the process of transcription? | (1) | |-------|-------------|---|--|-----| | | \times | A | DNA ligase | , | | | \times | В | lysozyme | | | | \boxtimes | c | RNA polymerase | | | | \times | D | restriction endonuclease | | | | (ii) | | escribe how a mutation in the non-coding region of the DNA can prevent a
ne being transcribed. | (2) | | ••••• | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (b) A gene coding for a protein has two alleles. Figure 14 shows the first 5 codons of an mRNA strand for these alleles. Allele 1 – AUG CCA CAG GAG UUC Allele 2 - AUG CCA GAG GAG UUC Figure 14 Allele 2 has a mutation. Figure 15 shows the key needed to predict the translated amino acid sequence of the protein. | codon | AUG | CCA | CAG | GAG | UUC | |------------|-----|-----|-----|-----|-----| | amino acid | Met | Pro | Gln | Glu | Phe | Figure 15 | Explain now the mutation in allele 2 could affect the functioning of this protein. | (2) | |--|-----| | | (3) | DO NOT WRITE IN THIS AREA | *(c) | | | affects the pheno | otype of an individ | ual. | |------|------------------|--------------------|---------------------|---------------------|-----------------| | | A child is blood | | | | | | | The child's moth | er is blood group | A and the child's | father is blood gro | up B. | | | Explain how this | child is blood gro | up O. | | | | | Use the Punnett | square and proba | bility in your ansv | wer. | (4) | | | | | | | (6) | (Total for Questio | n 9 = 12 marks) | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA **10** (a) Figure 16 shows the number of neurones in the brain of different animals. | animal | number of neurones in the brain | |---------|---------------------------------| | lobster | 1.0×10^{5} | | frog | 1.6×10^{7} | | rat | 2.0 × 10 ⁸ | | human | 8.6 × 10 ¹⁰ | Figure 16 (i) Calculate the difference between the number of neurones in the brain of the rat and the brain of the frog. Give your answer in standard form. (2) | | | neurones | |------|---|----------| | (ii) | Most neurones in the brain are unmyelinated whereas motor neurones are myelinated. | | | | Explain why myelination is needed on motor neurones but not on neurones in the brain. | | | | the brain. | (3) | | | | | | | | | | | | | DO NOT WRITE IN THIS AREA (b) Figure 17 shows a sensory neurone. Figure 17 (i) Label the axon on Figure 17. (1) (ii) Describe the role of sensory neurones. (2) DO NOT WRITE IN THIS AREA |) Explain how impulses are transmitted at syr | (4) | |---|------------------------------------| (Total for Question 10 = 12 marks) | | | TOTAL FOR PAPER = 100 MARKS | **BLANK PAGE**