

Oxford Cambridge and RSA Examinations

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS STATISTICS 2, S2

4767

MARK SCHEME

| Qu     | Answer                                                                                                                                                                                                                                                                                                                                                                        | Mark                      | Comment                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------|
| 1(i)   | $H_0: \rho = 0, H_1: \rho \neq 0$<br>[where $\rho$ is the population correlation coefficient]                                                                                                                                                                                                                                                                                 | B1<br>B1<br>[ <b>2</b> ]  | For H <sub>0</sub><br>For H <sub>1</sub>                                  |
| 1(ii)  | $S_{xy} = \Sigma xy - n\overline{xy} = 35\ 212.5 - 20 \times 34.55 \times 50.9 = 40.6$<br>$S_{xx} = \Sigma x^2 - n\overline{x}^2 = 23\ 917 - 20 \times 34.55^2 = 42.95$<br>$S_{yy} = \Sigma y^2 - n\overline{y}^2 = 51\ 904 - 20 \times 50.9^2 = 87.8$<br>$r = \frac{40.6}{\sqrt{42.95 \times 87.8}} \text{ or }$<br>$\frac{2.03}{\sqrt{42.95 \times 87.8}} = 0.66\ (2.8.5.)$ |                           | $S_{xy}$ or covariance<br>$S_{xx}$<br>$S_{yy}$<br>Structure of $r$<br>cao |
|        | $\sqrt{2.1475}\sqrt{4.39}$<br>For $n = 20$ , 1% critical value = 0.5614<br>Since 0.5614 < 0.661 we reject H <sub>0</sub> :                                                                                                                                                                                                                                                    | M1,A1<br>M1               | Critical value<br>Comparison                                              |
|        | There is sufficient evidence at the 1% significance<br>level to suggest there is correlation between head<br>circumferences and lengths of babies.<br>Background population is <i>bivariate Normal</i> .                                                                                                                                                                      | A1<br>E1<br>[ <b>10</b> ] | Conclusion in words in<br>context<br>Explanation                          |
| 1(iii) | $\sum x = 708, \qquad \sum y = 1001,$<br>$\sum x^2 = 25 \ 362, \qquad \sum y^2 = 50 \ 459,$<br>$n = 20, \qquad \sum xy = 35 \ 212.5$<br>$\Rightarrow S_{xy} = -222.9 \text{ and so } \rho < 0.$                                                                                                                                                                               |                           | All 6 correct<br>(B2 for any 4 correct,<br>B1 for any 2 correct)          |
| 1(iv)  | The incorrect pair produce an <i>extreme</i> point to the <i>right</i>                                                                                                                                                                                                                                                                                                        | E1                        | Extreme point                                                             |
|        | <i>ana</i><br><i>below</i> existing cluster, producing a negative<br>correlation.<br>( <b>Or</b><br>There will be a large change in the summary statistics,<br>which will make the covariance negative.)                                                                                                                                                                      |                           | Relative position<br>For large change<br>For negative cov                 |
|        |                                                                                                                                                                                                                                                                                                                                                                               | [2]                       | 1 of nogative cov.                                                        |

| 2(i)       B1       Correct overall shat         5%       19%         4000       5000         2(ii) $P(X > 5000) = 0.19 \Rightarrow 5000 = \mu + 0.8779\sigma$ $P(X < 4000) = 0.05 \Rightarrow 4000 = \mu - 1.645\sigma$ Solving: $1000 = 2.523\sigma$ $\Rightarrow \sigma = \frac{1000}{2.523} = 396$ (3 s.f.)         Hence: $\mu = 4000 + 1.645 \times 396 = 4650$ (3 s.f.)         P(4250 < X < 4750) = P(-1 < Z < 0.25) $= 0.4400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 2(ii) $P(X > 5000) = 0.19 \Rightarrow 5000 = \mu + 0.8779\sigma$<br>$P(X < 4000) = 0.05 \Rightarrow 4000 = \mu - 1.645\sigma$<br>Solving: $1000 = 2.523\sigma$<br>$\Rightarrow \sigma = \frac{1000}{2.523} = 396$ (3 s.f.)       B1<br>M1       Both z-values<br>Attempt at one equ<br>z-value         M1       Attempt at finding<br>B1<br>A1<br>[5]         2(iii) $P(4250 < X < 4750) = P(-1 < Z < 0.25)$<br>= 0.5987 - (1 - 0.8413)<br>= 0.4400       M1       Standardisations<br>Probability calcula<br>(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ape                       |
| 2(ii) $P(X > 5000) = 0.19 \Rightarrow 5000 = \mu + 0.8779\sigma$<br>$P(X < 4000) = 0.05 \Rightarrow 4000 = \mu - 1.645\sigma$<br>Solving: $1000 = 2.523\sigma$<br>$\Rightarrow \sigma = \frac{1000}{2.523} = 396 (3 \text{ s.f.})$ B1<br>M1<br>Attempt at one equ<br>$z$ -valueM1Attempt at finding<br>B1<br>$\sigma$<br>A1<br>$\mu$ 2(iii) $P(4250 < X < 4750) = P(-1 < Z < 0.25)$<br>$= 0.5987 - (1 - 0.8413)$<br>$= 0.4400$ M1<br>Standardisations<br>M1<br>A1<br>$\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | right-hand<br>e left-hand |
| 2(ii) $P(X > 5000) = 0.19 \Rightarrow 5000 = \mu + 0.8779\sigma$ B1       Both z-values $P(X < 4000) = 0.05 \Rightarrow 4000 = \mu - 1.645\sigma$ M1       Attempt at one equal $Solving: 1000 = 2.523\sigma$ M1       Attempt at finding $\Rightarrow \sigma = \frac{1000}{2.523} = 396$ (3 s.f.)       M1       Attempt at finding         Hence: $\mu = 4000 + 1.645 \times 396 = 4650$ (3 s.f.)       M1       Attempt at finding $P(4250 < X < 4750) = P(-1 < Z < 0.25)$ M1       Standardisations $= 0.5987 - (1 - 0.8413)$ M1       Standardisations $= 0.4400$ A1       cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| $P(X < 4000) = 0.05 \Rightarrow 4000 = \mu - 1.645\sigma$ Solving: $1000 = 2.523\sigma$ $\Rightarrow \sigma = \frac{1000}{2.523} = 396 (3 \text{ s.f.})$ Hence: $\mu = 4000 + 1.645 \times 396 = 4650 (3 \text{ s.f.})$ $P(4250 < X < 4750) = P(-1 < Z < 0.25)$ $= 0.5987 - (1 - 0.8413)$ $= 0.4400$ M1 Attempt at one equation of the second sec |                           |
| Solving: $1000 = 2.523\sigma$<br>$\Rightarrow \sigma = \frac{1000}{2.523} = 396 (3 \text{ s.f.})$<br>Hence: $\mu = 4000 + 1.645 \times 396 = 4650 (3 \text{ s.f.})$<br><b>2(iii)</b> $P(4250 < X < 4750) = P(-1 < Z < 0.25)$<br>= 0.5987 - (1 - 0.8413)<br>= 0.4400<br><b>X</b> = 0.4400<br><b>X</b> = 0.5987 - (1 - 0.8413) = 0.4400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uation with               |
| $\Rightarrow \sigma = \frac{1000}{2.523} = 396 (3 \text{ s.f.})$ Hence: $\mu = 4000 + 1.645 \times 396 = 4650 (3 \text{ s.f.})$ $M1 = B1 = \sigma$ A1 = [5] $M1 = [5]$ $P(4250 < X < 4750) = P(-1 < Z < 0.25)$ $= 0.5987 - (1 - 0.8413)$ $= 0.4400$ $M1 = P(-1 < Z < 0.25)$ $M1 = P(-1 < Z <$                 |                           |
| $2.325$ Hence: $\mu = 4000 + 1.645 \times 396 = 4650 \ (3 \text{ s.f.})$ $B1 \qquad A1 \qquad \mu$ $[5]$ $P(4250 < X < 4750) = P(-1 < Z < 0.25)$ $= 0.5987 - (1 - 0.8413)$ $= 0.4400$ $M1 \qquad \text{Standardisations}$ $M1 \qquad \text{Probability calcula}$ $A1 \qquad \text{cao}$ $[3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $,\sigma$                 |
| Hence: $\mu = 4000 + 1.645 \times 396 = 4650$ (3 s.f.)       A1 $\mu$ 2(iii)       P(4250 < X < 4750) = P(-1 < Z < 0.25)       M1       Standardisations $= 0.5987 - (1 - 0.8413)$ M1       Probability calcula $= 0.4400$ A1       cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 2(iii) $P(4250 < X < 4750) = P(-1 < Z < 0.25)$ M1Standardisations $= 0.5987 - (1 - 0.8413)$ $M1$ Probability calcula $= 0.4400$ A1cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| = 0.5987 - (1 - 0.8413) $= 0.4400$ M1 Probability calcula cao [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| = 0.4400 A1 cao [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ations                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| 2(iv) $P(X > 5450) = P(Z > 2)$ B1 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| =1-0.9772 = 0.0228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| <b>2(v)</b> $P(Z > -2.326) = 0.99$ B1 $\pm 2.326$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| $\Rightarrow x = 4650 - 2.326 \times 400 = 3719.6$ M1 Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| hence should quote 3700 hoursA1cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| 2(vi)P(0 or 1 bulbs need replacing)<br>= 0.8413 <sup>6</sup> + 6×0.8413 <sup>5</sup> × 0.1587<br>= 0.76 (2 s.f.)M1<br>M1,A1<br>A1<br>[4]0 or 1<br>Sum of 2 terms<br>cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |

| Qu               | Answer                                                                                                                                                                                                                                                     | Mark                              | Comment                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|
| 3(i)(A)          | $P(X \ge 2) = 1 - P(X \le 1)$<br>= 1 - e <sup>-1.63</sup> (1+1.63)<br>= 1 - 0.515 = 0.485 (3 s.f.)                                                                                                                                                         | M1<br>M1,A1<br>A1<br>[ <b>4</b> ] | Sum of 2 probs.<br>1 – sum of 2 probs.                   |
| 3(i)( <i>B</i> ) | $P(X = 1) \times P(Y = 1)$<br>= (e <sup>-1.63</sup> ×1.63)×(e <sup>-1.17</sup> ×1.17)<br>= 0.116 (3 s.f.)                                                                                                                                                  | M1<br>M1<br>A1<br>[ <b>3</b> ]    | 2 probabilities<br>Product                               |
| 3(i)(C)          | Using $\lambda = 1.63 + 1.17 = 2.8$ :<br>P(X + Y = 5) = 0.9349 - 0.8477 = 0.087 (2 s.f.)<br>(or P(X + Y = 5) = e <sup>-2.8</sup> × $\frac{2.8^5}{5!}$ = 0.087 (2 s.f.) )                                                                                   | M1,A1<br>M1<br>A1<br>[4]          | $\lambda = 2.8$<br>For calculation<br>cao                |
| 3(ii)            | Two reasons why proposed model might not be<br>suitable:<br>Poisson parameter unlikely to be same for each team;<br>lack of independence between the variables.                                                                                            | E1<br>E1<br>[2]                   | For one reason<br>For second reason                      |
| 3(iii)           | $\lambda = 19 \times 1.63 = 30.97$ , hence suitable approximating<br>distribution is N(30.97, 30.97)<br>P(more than 35 goals in a season)<br>= P(X > 35.5) = P(Z > $\frac{35.5 - 30.97}{\sqrt{30.97}})$<br>= P(Z > 0.814)<br>= 1-0.792<br>= 0.208 (3 s.f.) | M1,A1<br>B1<br>M1<br>A1<br>[5]    | Use of Normal approx.<br>Continuity corr.<br>Calculation |

| Qu       | Answer                                                                                                                                                                                                                                           | Mark                  | Comment                                      |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|--|
| 4(a)(i)  | $H_1: \mu < 40.5$                                                                                                                                                                                                                                | B1<br>[1]             | Hypothesis                                   |  |
| 4(a)(ii) | $n = 12, \sum x = 485.4 \Longrightarrow \overline{x} = 40.45$                                                                                                                                                                                    | M1,A1                 | Mean value                                   |  |
|          | Test statistic is $\frac{40.45 - 40.5}{\frac{0.2}{\sqrt{12}}} = -0.866$                                                                                                                                                                          | M1<br>M1<br>A1        | Numerator<br>Denominator                     |  |
|          | Since $-0.866 > -1.645$ , the result is not significant,<br>and it is reasonable to accept that $\mu = 40.5$                                                                                                                                     | B1<br>M1<br>A1<br>[8] | '1.645'<br>Comparison<br>Conclusion in words |  |
| 4(b)     | $H_0$ : There is no association between inoculation and<br>the occurrence of influenza<br>$H_1$ : There is an association between inoculation and<br>the occurrence of influenza                                                                 | B1<br>B1              |                                              |  |
|          | Expected frequencies:                                                                                                                                                                                                                            | M1,A1                 | Expected frequencies                         |  |
|          | Influenza         Total           Yes         No         Total           Inoculated         Yes         14.333         11.667         26           No         28.667         23.333         52           Totals         43         35         78 |                       |                                              |  |
|          | $\frac{(8-14.333)^2}{14.333} + \frac{(18-11.667)^2}{11.667} + \frac{(35-28.667)^2}{28.667} + \frac{(17-23.333)^2}{23.333}$<br>= 9.35 (3 s.f.)                                                                                                    | M1<br>A1              | Calculation of the test statistics cao       |  |
|          | Since $9.35 > 3.84$ , the result is significant, and<br>therefore it seems there is association between<br>incidence of inoculation and influenza                                                                                                | B1<br>M1<br>A1<br>[9] | 3.84<br>Comparison<br>Conclusion in words    |  |
|          |                                                                                                                                                                                                                                                  |                       | Total: 72                                    |  |

| AO | Range  | Total | Question Number |    |    |    |  |
|----|--------|-------|-----------------|----|----|----|--|
|    |        |       | 1               | 2  | 3  | 4  |  |
| 1  | 14-22  | 15    | 7               | 1  | 2  | 5  |  |
| 2  | 14-22  | 16    | 2               | 6  | 4  | 4  |  |
| 3  | 18-26  | 20    | 5               | 9  | 5  | 1  |  |
| 4  | 7-15   | 12    | 2               | -  | 4  | 6  |  |
| 5  | 3-11   | 9     | 2               | 2  | 3  | 2  |  |
|    | Totals | 72    | 18              | 18 | 18 | 18 |  |