Oxford Cambridge and RSA Examinations
 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MEI STRUCTURED MATHEMATICS
 STATISTICS 2, S2
 4767

MARK SCHEME

Qu	Answer	Mark	Comment
1(i)	$\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho \neq 0$ [where ρ is the population correlation coefficient]	B1 B1 [2]	For H_{0} For H_{1}
1(ii)	$\begin{aligned} & S_{x y}=\Sigma x y-n \overline{x y}=35212.5-20 \times 34.55 \times 50.9=40.6 \\ & S_{x x}=\Sigma x^{2}-n \bar{x}^{2}=23917-20 \times 34.55^{2}=42.95 \\ & S_{y y}=\Sigma y^{2}-n \bar{y}^{2}=51904-20 \times 50.9^{2}=87.8 \\ & r=\frac{40.6}{\sqrt{42.95 \times 87.8}} \text { or } \\ & \frac{2.03}{\sqrt{2.1475} \sqrt{4.39}}=0.66(2 \text { s.f. }) \end{aligned}$	B1 B1 B1 M1 A1	$S_{x y}$ or covariance $S_{x x}$ $S_{y y}$ Structure of r cao
	For $n=20,1 \%$ critical value $=0.5614$ Since $0.5614<0.661$ we reject H_{0} :	$\mathrm{M} 1, \mathrm{~A} 1$ M1	Critical value Comparison
	There is sufficient evidence at the 1% significance level to suggest there is correlation between head circumferences and lengths of babies. Background population is bivariate Normal.	A1 E1 [10]	Conclusion in words in context Explanation
1(iii)	$\begin{array}{ll} \sum x=708, & \sum y=1001, \\ \sum x^{2}=25362, & \sum y^{2}=50459, \\ n=20, & \sum x y=35212.5 \\ \Rightarrow S_{x y}=-222.9 \text { and so } \rho<0 . \end{array}$	B3 B1 [4]	All 6 correct (B2 for any 4 correct, B1 for any 2 correct) Or $\rho=-0.681$
1(iv)	The incorrect pair produce an extreme point to the right and below existing cluster, producing a negative correlation. (Or There will be a large change in the summary statistics, which will make the covariance negative.)	E1 E1 (E1 E1) [2]	Extreme point Relative position For large change For negative cov.

Qu	Answer	Mark	Comment
3(i)(A)	$\begin{aligned} \mathrm{P}(X \geq 2) & =1-\mathrm{P}(X \leq 1) \\ = & 1-\mathrm{e}^{-1.63}(1+1.63) \\ = & 1-0.515=0.485 \text { (3 s.f. }) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1,A1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Sum of 2 probs. 1 - sum of 2 probs.
3(i)(B)	$\begin{aligned} & \mathrm{P}(X=1) \times \mathrm{P}(Y=1) \\ & =\left(\mathrm{e}^{-1.63} \times 1.63\right) \times\left(\mathrm{e}^{-1.17} \times 1.17\right) \\ & =0.116(3 \text { s.f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [3]	2 probabilities Product
3(i)(C)	$\begin{aligned} & \text { Using } \lambda=1.63+1.17=2.8: \\ & \mathrm{P}(X+Y=5)=0.9349-0.8477=0.087 \quad(2 \text { s.f. }) \\ & \left(\operatorname{or} \mathrm{P}(X+Y=5)=\mathrm{e}^{-2.8} \times \frac{2.8^{5}}{5!}=0.087 \quad(2 \text { s.f. })\right) \end{aligned}$	$\begin{gathered} \text { M1,A1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \quad[4] \end{gathered}$	$\lambda=2.8$ For calculation cao
3(ii)	Two reasons why proposed model might not be suitable: Poisson parameter unlikely to be same for each team; lack of independence between the variables.	E1 E1 [2]	For one reason For second reason
3(iii)	$\lambda=19 \times 1.63=30.97$, hence suitable approximating distribution is $\mathrm{N}(30.97,30.97)$ $\mathrm{P}($ more than 35 goals in a season) $\begin{aligned} & =\mathrm{P}(X>35.5)=\mathrm{P}\left(Z>\frac{35.5-30.97}{\sqrt{30.97}}\right) \\ & =\mathrm{P}(Z>0.814) \\ & =1-0.792 \\ & =0.208 \text { (3 s.f.) } \end{aligned}$	M1,A1 B1 M1 A1 [5]	Use of Normal approx. Continuity corr. Calculation

AO	Range	Total	Question Number				
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{1}$	$14-22$	15	7	1	2	5	
$\mathbf{2}$	$14-22$	16	2	6	4	4	
$\mathbf{3}$	$18-26$	20	5	9	5	1	
$\mathbf{4}$	$7-15$	12	2	-	4	6	
$\mathbf{5}$	$3-11$	9	2	2	3	2	
Totals							

