

GCE

Physics B (Advancing Physics)

Advanced GCE

Unit G494: Rise and Fall of the Clockwork Universe

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Section A

Question			Mark	Rationale/Additional Guidance
1	а	N kg ⁻¹	1	
	b	J m ⁻¹	1	
2	а	4(.0)×10 ⁻¹⁹	1	ignore minus sign
	b	7.5×10 ²¹	1	ecf incorrect 2a if necessary
				look for at least 2 sig. figs
3			2	correct pattern for [2]
				one mistake for [1]
		\searrow		a mistake is
		<u>'</u>		a tick in the wrong place
				a missing tick
				an extra tick
4		2.5 × 0.84 (= 2.1);	1	no ecf
		$2.1 / 3.25 = 0.65 \text{ m s}^{-1};$	1	
5		lines/equipotentials/surfaces get further apart;	1	accept density of lines decreases
		(as you go towards the centre)		
6		$k = \frac{4\pi^2 m}{T^2};$	1	correct transposition of formula [1]
		$K = \frac{1}{T^2}$;		
		correct substitution into correct original/transposed formula;	1	correct substitution [1]
		$k = 2.8 \times 10^4 \text{ N m}^{-1}$	1	evaluation [1]
				look for at least 2 sig. figs
7	а	$x = -0.1 \sin(\pi t)$	1	
	b	0.5 s / 1.5 s / 2.5 s	1	any one for [1]
				apply list principle
8	а	1.3×10 ⁵ m	1	look for at least 2 sig. figs
	b	speed of light towards and away from surface is the same /	1	look for wtte
		flight time for light is the same in both directions / speed of		not just "speed of light is constant"
		light in atmosphere almost same as that in free space		ignore references to relativistic effects
_	С	pulse-echo time gets shorter (on successive orbits) owtte	1	accept echo is blue-shifted / smaller wavelength

C	Question	Expected Answer	Mark	Rationale/Additional Guidance
9	а	T = 288 K	1	ecf: e.g. $T = 15$ K gives 4.3×10^{23} for [1]
		$N = 2.3 \times 10^{22}$	1	look for at least 2 sig. figs
	b		1	look for straight line through origin accept freehand lines
		Section A Total	[20]	

Section B

Qı	uestic	on	Expected Answer	Mark	Rationale/Additional Guidance
10	а	i	EITHER	1	calculation of momentum or acceleration [1]
			$\Delta p = F \Delta t = 5.8 \times 10^6 \text{ Ns}$	1	calculation of velocity [1]
			OR	1	substitution into KE formula (and evaluation) [1]
			$a = F/m = 2.32 \times 10^4 \text{ ms}^{-2}$		ecf from stage to the next
			THEN		accept reverse calculation
			$v = p/m$ or $at = 2.32 \times 10^3$ m s ⁻¹ ;		accept 6.728×10 ⁹ J on its own for [1]
			$E_k = 0.5 mv^2$ or $0.5 p^2/m = 6.728 \times 10^9$ J;		not 6.73×10 ⁹ J
	а	ii	$E_p = -\frac{GMm}{r} = -7.29(1) \times 10^9 \text{ J}$	1	calculation of potential energy for [1] – the value must
			$\frac{L_p - \frac{1}{r}}{r} = 7.29(1) \times 10^{-3}$		be negative
			$E_{\rm t} = 6.73 \times 10^9 - 7.29 \times 10^9 = -5.6(3) \times 10^8 \rm J$	1	ecf incorrect potential energy (not potential)
	b	i	GMm 2 GMm	1	evidence of correct transposition of formula [1]
			$r = \sqrt{\frac{GMm}{F}}$ or $r^2 = \frac{GMm}{F}$		$(r^2 = 1.38 \times 10^{15})$
			$r = 3.7 \times 10^7 \mathrm{m}$	1	evaluation [1]
		ii	force A	2	correct shape between surface and zero-force point
				_	[1]
			zero-force point		correct shape and sign above zero-force point [1]
			distance from		straight line through both points for [0]
			surface of Moon		
			EITHER	2	cause [1]
	С		there is a gravitational force towards the Earth / an attractive	2	
			gravitational force from the Earth;		effect [1]
			reduces the deceleration of the object / reduces the		
			decelerating force / does work on the projectile;		
			OR		
			gravitational potential (energy) due to Earth;		
			reduces / lowers GPE of projectile at zero-force point;	[44]	
			Total	[11]	

Question		on	Expected Answer	Mark	Rationale/Additional Guidance
11			1	both for [1]	
		ii	charge/mC 5 4 3 2 1 0 0 20 40 60 80 time/s	2	Ignore point at $t = 0$. Other four correctly plotted within one square for [2] three or two correctly plotted for [1] ignore curve through the points
		iii	EITHER $\ln(\frac{Q}{Q_0}) = -\frac{t}{RC} \text{ or further rearrangement towards } R =;$ substution of any pair of data points and evaluation 3.5 mC gives 37.1 k Ω 2.1 mC gives 38.1 k Ω 1.2 mC gives 37.3 k Ω 0.7 mC gives 37.2 k Ω OR use of gradient of graph or two data points to find current; e.g. $(6.0 \times 10^{-3} - 3.5 \times 10^{-3}) / 20 = 1.25 \times 10^{-4} \text{ A}$ use of $R = V/I$; e.g. $R = \frac{(6.0 + 3.5)/2}{1.25 \times 10^{-4}} = 3.8 \times 10^{4} \Omega$ OR from graph, find time τ for Q to fall to 37% of initial value; use of $\tau = RC$ to find R ; OR from graph, find the halving-time $T_{0.5}$;	1	method [1] evaluation [1] accept reverse calculation into $Q = Q_0 e^{-t/RC}$ look for $0.37 \times 6.0 = 2.2 \text{ mC} \dots$

G494 Mark Scheme June 2011

Q	Question		Expected Answer		Mark	Rationale/Additional Guidance
			use of $T_{0.5} = 0.69RC$ or $\ln 2RC$;			look for $T_{0.5} = 27 \pm 3 \text{ s} \dots$
	b	i	20 3.50	-1.84	2	first value -0.87 correct for [1]
			40 1.66	-0.874 / - 0.87		remaining three values correct to two sig figs for [1]
			60 0.786 / 0.79	-0.414 / - 0.42		no ecf from incorrect first answer
			80 0.372 / 0.37			accept 0.38 in fourth line
	b	ii	model assumes constant charge in practice charge / current / p.d.		1 1	accept constant current / discharge rate in time Δt
			so calculated ⊿Q too large / calculated		1	QWC third mark links model to discrepancy
	Total		[10]			

Q	uesti	ion	Expected Answer		Rationale/Additional Guidance	
12	а	i	arrow to the left, same length	1	arrow can be anywhere on Fig. 12.1	
		ii	$\Delta p = mv - (-mv) (= 2mv);$	1	justify magnitude for [1]	
			total momentum of particle and wall doesn't change;	1	momentum conservation to justify direction for [1]	
					not just action and reaction are equal and opposite	
		iii	distance travelled between collisions is two diameters	1	look for these two ideas (can be in algebra)	
			AND			
			time between collisions = distance / speed			
	b	i	$P = \frac{F}{A}$	3	evidence of correct formula for pressure [1]	
			$\int_{A}^{A} \frac{1}{A}$			
			mv^2		substitution of F (with or without N) and $A = 2\pi r^2$ [1]	
			$F = N \times \frac{mv^2}{2r}$			
			$P = N \times \frac{mv^2}{2r} \times \frac{1}{2\pi r^2}$		followed by manipulation to final correct formula [1]	
			$P = N \times \frac{m}{2r} \times \frac{1}{2\pi r^2}$			
			2 2		Note that if <i>N</i> is inserted into the formulae at the end,	
			$P = \frac{Nmv^2}{3} \times \frac{3}{4\pi r^3}$ etc.		without explanation, this loses the 3 rd mark.	
			$3 4\pi r^3$		not use of $pV = \frac{Nm}{3}\overline{c^2}$	
					3	
		ii	any three of the following, [1] each:	3	ignore references to random walks	
			particles can			
			 have different speeds / (kinetic) energy 		accept velocity for speed	
			have different mass			
			 not travel radially (wtte) 			
			interact / collide with each other			
			have a finite volume			
			have inelastic collisions (with the walls)		QWC - third mark can only be earned if all words	
					spelled correctly.	
			Total	[10]		

Q	Question		Expected Answer	Mark	Rationale/Additional Guidance
13	а		EITHER ratio of adjacent values of ϕ constant: $530/920 = 0.58$, $920/1500 = 0.61$, $1500/2200 = 0.68$ OR ratio of adjacent values of ϕ constant: $920/530 = 1.7$, $1500/920 = 1.6$, $2200/1500 = 1.5$ OR difference between adjacent values of $\ln \phi$ constant: ± 0.55 , ± 0.49 , ± 0.38	2	valid test AND condition for exponential variation[1] valid test applied successfully three times [1]
	b	i	(activation) energy to allow a particle to change position within the liquid owtte	1	not just activation energy not to escape from the liquid accept break free (from its neighbours)
		ii	average energy per molecule	1	accept particle or atom
		iii	Ø ↑ Ø 0 − − − − − − − − − − − − − − − − − −	1 1 1	starts at 0 and tending to φ_0 at high T for [1] approx $\varphi_0/3$ at $T = \varepsilon/k$ (use template) for [1] correct shape of curve for [1]
	С		BF / $e^{-\varepsilon/kT}$ increases with increasing temperature; BF is probability that a particle can change position / proportion of particles which can move / fraction of particles which can move;	1	accept break free (from its neighbours)
			Section B Total	[9]	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

