AS

Mathematics

MPC1-Pure Core 1
Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations	
M	mark is for method
dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, the principal examiner may suggest that we award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a) (b)	$\begin{aligned} & \begin{array}{l} \sqrt{98}=7 \sqrt{2} \text { or } \sqrt{32}=4 \sqrt{2} \\ \\ \quad(7 \sqrt{2}-4 \sqrt{2}=) \quad 3 \sqrt{2} \\ \frac{* *}{2+3 \sqrt{2}} \times \frac{2-3 \sqrt{2}}{2-3 \sqrt{2}} \end{array} \\ & {\left[\begin{array}{l} \text { Numerator }=] \quad 6 \sqrt{2}-18 \\ \text { [Denominator }=4+6 \sqrt{2}-6 \sqrt{2}-18] \\ =-14 \end{array}\right.} \\ & \text { Value }=\frac{6 \sqrt{2}-18}{-14} \quad=\frac{9}{7}-\frac{3}{7} \sqrt{2} \text { or }-\frac{3}{7} \sqrt{2}+\frac{9}{7} \end{aligned}$	M1 A1 M1 A1 B1 A1cso	2 4	multiplied out must be seen as denominator must have these two simplified fractions for A1 cso but may have $1 \frac{2}{7}-\frac{3}{7} \sqrt{2}$ etc condone $\frac{9}{7}-\frac{3 \sqrt{2}}{7}$ for A1 cso No ISW.
	Total		6	
(a) (b)	NO MISREADS ALLOWED IN THIS QUESTION NMS $3 \sqrt{2}$ scores full marks Condone multiplication by $2-3 \sqrt{2}$ instead of $\times \frac{2-3 \sqrt{2}}{2-3 \sqrt{2}}$ for M1 only if subsequent working shows multiplication by both numerator and denominator - otherwise M0 An error in the denominator such as $4+5 \sqrt{2}-5 \sqrt{2}-18$ should be given $\mathbf{B 0}$ and it would then automatically lose the final A1cso May use alternative conjugate $\times \frac{3 \sqrt{2}-2}{3 \sqrt{2}-2} \mathbf{M 1}$; (Denominator $\left.=18-6 \sqrt{2}+6 \sqrt{2}-4\right)=14$ B1 etc Alternative: M1 for $\frac{* *}{2 \sqrt{2}+6} \times \frac{2 \sqrt{2}-6}{2 \sqrt{2}-6}$ if $\times \frac{\sqrt{2}}{\sqrt{2}}$ first ; then (Numerator $=$) $12 \sqrt{2}-36$ A1 $($ Denominator $=8+12 \sqrt{2}-12 \sqrt{2}-36)=-28 \mathbf{B 1}$ etc If A1 cso is earned then condone incorrect p and q values stated. If candidate has the correct answer and then "simplifies to" eg $9-3 \sqrt{2}$ then withhold $\mathbf{A 1}$ cso.			

Q3	Solution	Mark	Total	Comment
(a)(i) (ii) (b)(i) (ii) (iii)	$\left.\left.\begin{array}{rl} {[\mathrm{p}(-2)=]} & (-2)^{3}-7(-2)^{2}-5(-2)+26 \\ = & -8-28+10+26 \\ = & 0 \end{array}\right] \text { therefore } x+2 \text { is a factor }\right]$ $\left.\begin{array}{l} \quad \begin{array}{c} b=-9 \text { or } \quad c=13 \\ {[\mathrm{p}(x)=] \quad(x+2)\left(x^{2}-9 x+13\right)} \end{array} \\ b^{2}-4 a c \text { for "their" quadratic as far as } \\ {\left[(-9)^{2}-4 \times 13=\right] \quad 81-52} \\ 29>0 \text { or } \quad 81-52>0 \text { or }\left(^{*}\right) \\ \text { (so curve crosses } x \text {-axis) } 3 \text { times } \end{array}\right], ~ \begin{gathered} {\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \quad 3 x^{2}-14 x-5} \\ \left.\begin{array}{l} \left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right] \quad 6 x-14 \\ {\left[\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right] \quad 3\left(-\frac{1}{3}\right)^{2}-14\left(-\frac{1}{3}\right)-5} \\ \text { or }\left[\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right] \quad 6\left(-\frac{1}{3}\right)-14 \end{array}\right] \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}+\frac{14}{3}-5=0 \\ \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-2-14(=-16)<0 \end{gathered}$	M1 A1 M1 A1 M1 A1 M1 A1 B1 M1 A1	3	clear attempt at $p(-2)$ NOT long division must see powers of -2 simplified correctly working showing that $\mathrm{p}(-2)=0$ and correct statement by inspection correct product with brackets correct condone -9^{2} if recovered as 81 (*) stating quadratic has 2 (real) roots correct deduction and quadratic correct 2 terms correct all correct correct substitution of $x=-\frac{1}{3}$ into "their" $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or "their" $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ convincingly showing $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ must appear on at least one line correct and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ seen $\&$ value shown to be < 0 \& statement must earn M1 A1 to earn final A1
	Total		12	
(a)(i) (ii) (b)(i) (iii)	Minimum required for statement is " \therefore factor" Powers of -2 must be evaluated: Example " $p(-2)=-8-28+10+26=0$ so factor" scores M1 A1 Statement may appear first : Example " $x+2$ is factor if $p(-2)=0 \& p(-2)=-8-28+10+26=0$ " scores M1 A1 but Example " $\mathrm{p}(-2)=(-2)^{3}-7(-2)^{2}+5(-2)+26=0$ therefore $x+2$ is a factor" scores M1 A0 M1 may also be earned for a full long division attempt by $(x+2)$, or a clear attempt to find a value for both b and c (even though incorrect) by comparing coefficients. NMS $(x+2)\left(x^{2}-9 x+13\right)$ scores M1A1 Do not penalise $9^{2}-4 \times 13$ etc for M1 ; may use full quadratic equation formula so award $\mathbf{M 1}$ for correct unsimplified expression with discrim't as far as " $81-52$ " for "their" quadratic. NMS " 3 times" scores M0. May show $3 x^{2}-14 x-5=(3 x+1)(x-5)$ M1 with $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ leading to $x=-\frac{1}{3}$ for first A1. Withhold final A1 if incorrect statement such as "therefore maximum" follows $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$			

Q4	Solution	Mark	Total	Comment
	$\begin{gathered} b^{2}-4 a c=0 \\ (5 k-3)^{2}-4 \times 3 k(k+1) \quad(=0) \\ 13 k^{2}-42 k+9(=0) \\ (k-3)(13 k-3)(=0) \\ k=3, \quad k=\frac{3}{13} \end{gathered}$	B1 M1 A1 dM1 A1cso	5	condition for equal roots stated or correct discriminant $=0$ correct discriminant attempt at factors or correct substitution into formula for their quadratic accept equivalent fractions
	Total		5	
	Condone poor use/omission of brackets for M1 if correct discriminant is intended, but the A1 cso cannot then be earned even if recovered later. For dM1 factors must be such that the product would give "their" k^{2} and constant terms; if quadratic formula is used then it must be a correct substitution for "their" quadratic. Candidates must have " $=0$ " on at least one line of working or statement " $b^{2}-4 a c=0$ " and all working correct to earn A1cso. If candidate uses " >0 " etc then withhold A1cso even if final answer is written as $k=3, \quad k=\frac{3}{13}$. M1 only if discriminant within formula			

Q5	Solution	Mark	Total	Comment
(a)	$\begin{aligned} \operatorname{Grad} P C & =\frac{-2--8}{2-7} \\ & =-\frac{6}{5} \mathbf{O E} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	condone one sign error in one term withhold A1 if gradient of perpendicular attempted. No ISW here.
(b)	$\begin{aligned} & (x-7)^{2}+(y+8)^{2}=\ldots \\ & 5^{2}+6^{2} \quad \text { or } 25+36 \\ & (x-7)^{2}+(y+8)^{2}=61 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{gathered}$	3	or $(x-7)^{2}+(y--8)^{2}=\ldots$ or seen under square root or $(x-7)^{2}+(y--8)^{2}=61$
(c)	$\begin{gathered} -8+\text { "their" } \sqrt{k} \text { or }-8 \pm \text { "their } " \sqrt{k} \\ -8+\sqrt{61} \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	also allow -8-"their" \sqrt{k} for M1
(d)	$\begin{aligned} & M \text { is midpoint of } P R \\ & \left(C M^{2}=\right) \text { "their } 61^{\prime \prime}-4^{2} \\ & \left(C M^{2}=\right) 45 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Pythagoras used correctly with " 4 " and with hyp ${ }^{2}=$ " their" k or correct or $(C M=) \sqrt{45}$
	$(\text { shortest distance }=) 3 \sqrt{5}$	A1cso	3	all notation correct
	Total		10	

(a) Award SC B1 for grad $P C=6 / 5$ if M1 not earned

NMS $-\frac{6}{5}$ scores M1 A1 ; condone $\frac{-6}{5}$ or $\frac{6}{-5}$ for full marks
(b) $(x-7)^{2}+(y+8)^{2}=61$ scores M1 B1 A1
allow RHS $=(\sqrt{61})^{2}$ instead of 61 for full marks
Example: $(x-7)^{2}+(y+8)^{2}=\sqrt{61}$ earns M1 B1 A0
Equation of circle must be written explicitly as $(x-7)^{2}+(y+8)^{2}=61$

$$
\text { or }(x-7)^{2}+(y--8)^{2}=61 \text { to earn A1 mark }
$$

(c) NMS $-8+\sqrt{61}$ scores M1 A1

Alternative: $y^{2}+16 y+3=0 \Rightarrow y=\frac{-16 \pm \sqrt{256-12}}{2}$ M1 $\Rightarrow y=\frac{-16+\sqrt{244}}{2}$ A1
(d) Example: 61-4 ${ }^{2}=45=3 \sqrt{5}$ scores M1, A1, A0

Example: $61-4^{2}=45, \quad \sqrt{45}=3 \sqrt{5}$ scores M1, A1, A1

Q8	Solution	Mark	Total	Comment
(a)	$5 x^{2}+6 x-63<0$ $(5 x+21)(x-3)$	M1		correct factors or correct use of formula as far as $\frac{-6 \pm \sqrt{1296}}{10}$ or completing square as far as $-\frac{3}{5} \pm \sqrt{\frac{324}{25}}$
	$\begin{aligned} & \text { CVs are } x=3,-\frac{21}{5} \\ & \qquad \begin{array}{ll} + & - \\ -\frac{21}{5} & \\ \hline & \end{array} \end{aligned}$	A1 M1		condone equivalent fractions here use of sign diagram or graph; PI by correct answer
	$-\frac{21}{5}<x<3$ or $3>x>-4.2 \quad$ etc	A1	4	fractions must be simplified for final mark; no ISW here
(b)(i)	$\begin{aligned} & 2 x(x+3+4 x+3)<126 \\ & \quad 10 x^{2}+12 x<126 \Rightarrow 5 x^{2}+6 x<63 \end{aligned}$	B1	1	$4 x(x+3)+6 x^{2}<126 \text { etc }$ AG be convinced; condone trailing equals sign and final answer as $63>5 x^{2}+6 x$
(ii)	$A D=5 x$ so perimeter $=14 x+6$	B1	1	condone $6+14 x$
(iii)	"their" $14 x+6 \ldots 30$	M1		must have "greater than or equal to"
	$x \ldots \frac{12}{7}$	A1		$\text { condone } x \ldots \frac{24}{14}$
	combining gives $\frac{12}{7}, x<3$	A1	3	condone $\frac{24}{14}, x<3$ must have scored 4 marks in part (a)
	Total		9	
(a)	For second M1, if critical values are correct marked. However, if CVs are not correct then second their CVs MUST be marked on the diagram Final A1, inequality must have x and no oth Final answer of $x>-\frac{21}{5}$ AND $x<3$ (A) $-\frac{21}{5}<k<3$ (B) $x>-\frac{21}{5}$ OR with or without working, each scores SC3 Example NMS $\frac{21}{5}<x<3 \quad$ scores M0 Example NMS $x<-4.2 \quad x<3 \quad$ score If M1 is not earned award SC B1 for $\frac{12}{7}<x$	hen sign M1 can or sketch letter. (with or <3 since on M1 A1 <3	diagram e earned ithout w CV is in (0) (since	or sketch must be correct with correct CVs for attempt at sketch or sign diagram but orking) scores 4 marks. , $x<3$ (D) $-\frac{21}{5}, x, 3$ correct) both CVs are correct)

