

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6665/01)

June 2007 6665 Core Mathematics C3 Mark Scheme

Question Number		Scheme	Marks
1.	(a)	$\ln 3x = \ln 6$ or $\ln x = \ln \left(\frac{6}{3}\right)$ or $\ln \left(\frac{3x}{6}\right) = 0$	M1
		x = 2 (only this answer)	A1 (cso) (2)
	(<i>b</i>)	$(e^x)^2 - 4e^x + 3 = 0$ (any 3 term form)	M1
		$(e^x - 3)(e^x - 1) = 0$	
		$e^x = 3$ or $e^x = 1$ Solving quadratic	M1 dep
		$(e^{x})^{2}-4e^{x}+3=0$ (any 3 term form) $(e^{x}-3)(e^{x}-1)=0$ $e^{x}=3$ or $e^{x}=1$ Solving quadratic $x = \ln 3$, $x = 0$ (or $\ln 1$)	M1 A1 (4)
			(6 marks)

Notes: (a) Answer x = 2 with no working or no incorrect working seen: M1A1

Note:
$$x = 2$$
 from $\ln x = \frac{\ln 6}{\ln 3} = \ln 2$ M0A0

$$\ln x = \ln 6 - \ln 3 \implies x = e^{(\ln 6 - \ln 3)}$$
 allow M1, $x = 2$ (no wrong working) A1

(b) 1^{st} M1 for attempting to multiply through by e^x : Allow y, X, even x, for e^x 2^{nd} M1 is for solving quadratic as far as getting two values for e^x or y or X etc 3^{rd} M1 is for converting their answer(s) of the form $e^x = k$ to x = lnk (must be exact) A1 is for ln3 and ln1 or 0 (Both required and no further solutions)

2. (a)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage	B1	
	$f(x) = \frac{(2x+3)(2x-1)-(9+2x)}{(2x-1)(x+2)}$ f.t. on error in denominator factors	M1, A1√	
	(need not be single fraction) Simplifying numerator to quadratic form	M1	
	Correct numerator $= \frac{4x^2 + 2x - 12}{[(2x-1)(x+2)]}$	A1	
	Factorising numerator, with a denominator $=\frac{2(2x-3)(x+2)}{(2x-1)(x+2)}$ o.e.	M1	
	$=\frac{4x-6}{2x-1} \qquad (*)$	A1 cso (7)	
Alt.(a)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage B1		
	$f(x) = \frac{(2x+3)(2x^2+3x-2) - (9+2x)(x+2)}{(x+2)(2x^2+3x-2)}$ M1A1 f.t.		
	$=\frac{4x^3+10x^2-8x-24}{(x+2)(2x^2+3x-2)}$		
	$= \frac{2(x+2)(2x^2+x-6)}{(x+2)(2x^2+3x-2)} \text{ or } \frac{2(2x-3)(x^2+4x+4)}{(x+2)(2x^2+3x+2)} \text{ o.e.}$		
	Any one linear factor × quadratic factor in numerator M1, A1		
	$= \frac{2(x+2)(x+2)(2x-3)}{(x+2)(2x^2+3x-2)} \text{ o.e.}$ M1		
	$=\frac{2(2x-3)}{2x-1} \qquad \frac{4x-6}{2x-1} \qquad (*)$ A1		
(<i>b</i>)	Complete method for $f'(x)$; e.g $f'(x) = \frac{(2x-1)\times 4 - (4x-6)\times 2}{(2x-1)^2}$ o.e	M1 A1	
	$= \frac{8}{(2x-1)^2} \text{or} 8(2x-1)^{-2}$	A1 (3)	
	Not treating f ⁻¹ (for f') as misread	(10 marks)	

Notes: (a) 1st M1 in either version is for correct method

1st A1 Allow
$$\frac{2x+3(2x-1)-(9+2x)}{(2x-1)(x+2)}$$
 or $\frac{(2x+3)(2x-1)-9+2x}{(2x-1)(x+2)}$ or $\frac{2x+3(2x-1)-9+2x}{(2x-1)(x+2)}$ (fractions)

 2^{nd} M1 in (main a) is for forming 3 term quadratic in **numerator**

 3^{rd} M1 is for factorising their quadratic (usual rules); factor of 2 need not be extracted

(*) A1 is given answer so is cso

Alt:(a) 3rd M1 is for factorising resulting quadratic

(b) SC: For M allow \pm given expression or one error in product rule

Alt: Attempt at $f(x) = 2 - 4(2x - 1)^{-1}$ and diff. M1; $k(2x - 1)^{-2}$ A1; A1 as above

Accept $8(4x^2 - 4x + 1)^{-1}$.

Differentiating original function – mark as scheme.

Question Number	Scheme	Marks
3. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$	M1,A1,A1 (3)
(<i>b</i>)	If $\frac{dy}{dx} = 0$, $e^x(x^2 + 2x) = 0$ setting $(a) = 0$	M1
	$\frac{dx}{dx} = 0, e^{x}(x^{2} + 2x) = 0 \qquad \text{setting } (a) = 0$ $[e^{x} \neq 0] \qquad x(x+2) = 0$ $(x = 0) \qquad x = -2$ $x = 0, y = 0 \text{and} x = -2, y = 4e^{-2} (= 0.54)$ $\frac{d^{2}y}{dx^{2}} = x^{2}e^{x} + 2xe^{x} + 2xe^{x} + 2e^{x} \qquad \left[= (x^{2} + 4x + 2)e^{x} \right]$	A1 \wedge (3) M1, A1 (2)
(<i>d</i>)	$x = 0, \frac{d^2 y}{dx^2} > 0 (=2)$ $x = -2, \frac{d^2 y}{dx^2} < 0 [= -2e^{-2} (= -0.270)]$ M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's x value(s) from (b)	M1
	∴minimum ∴maximum	A1 (cso) (2)
Alt.(d)	For M1: Evaluate, or state sign of, $\frac{dy}{dx}$ at two appropriate values – on either side of at least one of their answers from (b) or Evaluate y at two appropriate values – on either side of at least one of their answers from (b) or Sketch curve	
		(10 marks)

Notes: (a) M for attempt at f(x)g'(x) + f'(x)g(x)

1st A1 for one correct, 2nd A1 for the other correct.

Note that x^2e^x on its own scores no marks

(b) 1^{st} A1 (x = 0) may be omitted, but for 2^{nd} A1 both sets of coordinates needed; f.t only on candidate's x = -2

- (c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
- (d) A1 is cso; x = 0, min, and x = -2, max and no incorrect working seen, or (in alternative) sign of $\frac{dy}{dx}$ either side correct, or values of y appropriate to t.p.

Need only consider the quadratic, as may assume $e^x > 0$.

If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

Question Number	nber Scneme		Marks	
4. (a)	$x^{2}(3-x)-1=0$ o.e. (e.g. $x^{2}(-x+3)=1$) $x=\sqrt{\frac{1}{3-x}}$ (**)		M1	
	$x = \sqrt{\frac{1}{2}} \qquad (\clubsuit)$		A1 (cso)	(2)
	$\sqrt{3-x}$ Note(**), answer is given: need to see appropriate working and A1 is cso		` ,	` /
	[Reverse process: Squaring and non-fractional equation N			
(b)	$x_2 = 0.6455$, $x_3 = 0.6517$, $x_4 = 0.6526$		B1; B1	(2)
	1 st B1 is for one correct, 2 nd B1 for other two correct If all three are to greater accuracy, award B0 B1			
		1 1 1 1	N. 4.1	
(c)	(c) Choose values in interval (0.6525, 0.6535) or tighter and evaluate both $f(0.6525) = -0.0005$ (372 $f(0.6535) = 0.002$ (101		M1	
	At least one correct "up to bracket", i.e0.0005 or 0.00	02	A1	(2)
	Change of sign, $\therefore x = 0.653$ is a root (correct) to 3 d.p. Requires both correct "up to bracket" and conclusion as a	above	A1	(3)
A.1. (2)	•		(7 ma	rks)
Alt (i)	Continued iterations at least as far as x_6 $x_5 = 0.65268$, $x_6 = 0.6527$, $x_{7} = \dots$ two correct to at least	M1 4 s.f. A1		
	Conclusion: Two values correct to 4 d.p., so 0.653 is roo	ot to 3 d.p. A1		
Alt (ii)	If use $g(0.6525) = 0.6527 > 0.6525$ and $g(0.6535) = 0.6528 < 0.6535$ M1A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p.			
	Concression . Both results correct, so 0.055 is root to 5 d.p.	<i>y</i> . <i>111</i>		
5.		1		
(a)	Finding g(4) = k and f(k) = or fg(x) = $\ln \left(\frac{4}{x-3} - 1 \right)$		M1	
	[$f(2) = \ln(2x2 - 1)$ $fg(4) = \ln(4 - 1)$] $y = \ln(2x - 1)$ \Rightarrow $e^y = 2x - 1$ or $e^x = 2y - 1$	$= \ln 3$	A1	(2)
(b)			M1, A1	
	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$ Allow $y = \frac{1}{2}(e^x + 1)$		A1	(4)
(c)	Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$]	independent ape, and <i>x</i> -axis	B1	(4)
(c)	sho	ould appear to be	B1	
		ymptote uation $x = 3$		
	nee	eded, may see in	B1 ind.	
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	gram (ignore ners)		
		tercept $(0, \frac{2}{3})$ no		
	oth	ner; accept $y = \frac{2}{3}$ 67) or on graph	B1 ind	(3)
(1)		or) or on graph	D1	
	(d) $\frac{2}{x-3} = 3$ $\Rightarrow x = 3\frac{2}{3}$ or exact equiv. $\frac{2}{x-3} = -3$, $\Rightarrow x = 2\frac{1}{3}$ or exact equiv.		B1	
			M1, A1	(3)
	Note: $2 = 3(x + 3)$ or $2 = 3(-x - 3)$ o.e. is M0A0			
Alt:			(12 ma	rks)
6665 Core Mathematics C3 5 June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics				

6.	(a)	Complete method for R: e.g. $R \cos \alpha = 3$, $R \sin \alpha = 2$, $R = \sqrt{(3^2 + 2^2)}$	M1
		$R = \sqrt{13}$ or 3.61 (or more accurate)	A1
		Complete method for $\tan \alpha = \frac{2}{3}$ [Allow $\tan \alpha = \frac{3}{2}$]	M1
		$\alpha = 0.588$ (Allow 33.7°)	A1 (4)
	(<i>b</i>)	Greatest value = $\left(\sqrt{13}\right)^4 = 169$	M1, A1 (2)
	(c)	$\sin(x+0.588) = \frac{1}{\sqrt{13}}$ (= 0.27735) $\sin(x + \text{their } \alpha) = \frac{1}{\text{their } R}$	M1
		(x + 0.588) = 0.281(03) or 16.1°	A1
		$(x + 0.588)$ = $\pi - 0.28103$ Must be π -their 0.281 or 180° - their 16.1°	M1
		or $(x + 0.588)$ = $2\pi + 0.28103$ Must be $2\pi +$ their 0.281 or $360^{\circ} +$ their 16.1°	M1
		x = 2.273 or $x = 5.976$ (awrt) Both (radians only)	A1 (5)
		If 0.281 or 16.1° not seen, correct answers imply this A mark	(11 marks)

Notes: (a) 1st M1 for correct method for R

 2^{nd} M1 for correct method for tan α

No working at all: M1A1 for $\sqrt{13}$, M1A1 for 0.588 or 33.7°.

N.B. Rcos $\alpha = 2$, Rsin $\alpha = 3$ used, can still score M1A1 for R, but loses the A mark for α . $\cos \alpha = 3$, $\sin \alpha = 2$: apply the same marking.

- (b) M1 for realising $\sin(x + \alpha) = \pm 1$, so finding R⁴.
- (c) Working in mixed degrees/rads: first two marks available Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 candidate's $0.588 + 2\pi$ or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.

Alt: (c) (i) Squaring to form quadratic in
$$\sin x$$
 or $\cos x$ M1 $[13\cos^2 x - 4\cos x - 8 = 0, 13\sin^2 x - 6\sin x - 3 = 0]$ Correct values for $\cos x = 0.953..., -0.646$; or $\sin x = 0.767, 2.27$ awrt A1 For any one value of $\cos x$ or $\sin x$, correct method for two values of x M1 $x = 2.273$ or $x = 5.976$ (awrt) Both seen anywhere A1 Checking other values $(0.307, 4.011)$ or $(0.869, 3.449)$ and discarding M1

Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding M1

(ii) Squaring and forming equation of form $a\cos 2x + b\sin 2x = c$ $9\sin^2 x + 4\cos^2 x + 12\sin 2x = 1 \Rightarrow 12\sin 2x + 5\cos 2x = 11$ Setting up to solve using R formula e.g. $\sqrt{13}\cos(2x-1.176) = 11$ M1 $(2x-1.176) = \cos^{-1}\left(\frac{11}{\sqrt{13}}\right) = 0.562(0... \quad (\alpha)$ A1 $(2x-1.176) = 2\pi - \alpha, \ 2\pi + \alpha,....$ M1

x = 2.273 or x = 5.976 (awrt) Both seen anywhere A1 Checking other values and discarding M1

Question Number	Scheme	Marks
7. (a)	$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$ M1 Use of common denominator to obtain single fraction	M1
	$= \frac{1}{\cos \theta \sin \theta}$ M1 Use of appropriate trig identity (in this case $\sin^2 \theta + \cos^2 \theta = 1$)	M1
	$= \frac{1}{\frac{1}{2}\sin 2\theta}$ Use of $\sin 2\theta = 2\sin \theta \cos \theta$ $= 2\csc 2\theta (*)$	M1 A1 cso (4)
Alt.(a)	$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \tan \theta + \frac{1}{\tan \theta} = \frac{\tan^2 \theta + 1}{\tan \theta}$ M1	A1 CS0 (4)
	$=\frac{\sec^2\theta}{\tan\theta}$ M1	
	$= \frac{1}{\cos\theta\sin\theta} = \frac{1}{\frac{1}{2}\sin 2\theta} $ M1	
(<i>b</i>)	$= 2 \csc 2\theta (\clubsuit) (cso) A1$ If show two expressions are equal, need conclusion such as QED, tick, true.	
	Shape (May be translated but need to see 4"sections")	B1
	T.P.s at $y = \pm 2$, asymptotic at correct x-values (dotted lines not required)	B1 dep. (2)
(c)	$2\csc 2\theta = 3$ $\sin 2\theta = \frac{2}{3}$ Allow $\frac{2}{\sin 2\theta} = 3$ [M1 for equation in $\sin 2\theta$]	M1, A1
	$(2\theta) = [41.810^{\circ}, 138.189^{\circ}; 401.810^{\circ}, 498.189^{\circ}]$ 1st M1 for α , 180 – α ; 2 nd M1 adding 360° to at least one of values $\theta = 20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ}$ (1 d.p.) awrt	M1; M1
Note	1^{st} A1 for any two correct, 2^{nd} A1 for other two Extra solutions in range lose final A1 only SC: Final 4 marks: θ = 20.9°, after M0M0 is B1; record as M0M0A1A0	A1,A1 (6)
Alt.(c)	$\tan \theta + \frac{1}{\tan \theta} = 3$ and form quadratic, $\tan^2 \theta - 3 \tan \theta + 1 = 0$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$, A1 for correct equation above)	
	Solving quadratic $[\tan \theta = \frac{3 \pm \sqrt{5}}{2} = 2.618 \text{ or } = 0.3819]$ M1	
	$\theta = 69.1^{\circ}, 249.1^{\circ}$ $\theta = 20.9^{\circ}, 200.9^{\circ}$ (1 d.p.) M1, A1, A1 (M1 is for one use of $180^{\circ} + \alpha^{\circ}$, A1A1 as for main scheme)	(12 marks)

Question Number	Scheme		Marks
8. (a)	$D = 10, t = 5, \qquad x = 10e^{-\frac{1}{8} \times 5}$	M1	(2)
(b)	$D = 10 + 10e^{-\frac{5}{8}}, t = 1, \qquad x = 15.3526 \times e^{-\frac{1}{8}}$ $x = 13.549 (\clubsuit)$	M1 A1	(2) cso (2)
Alt.(b)	$x = 10e^{-\frac{1}{8} \times 6} + 10e^{-\frac{1}{8} \times 1}$ M1 $x = 13.549$ (**) A1 cso		
(c)	$15.3526e^{-\frac{1}{8}T} = 3$	M1	
	$e^{-\frac{1}{8}T} = \frac{3}{15.3526} = 0.1954$ $-\frac{1}{8}T = \ln 0.1954$	M1	
	8 $T = 13.06$ or 13.1 or 13	A1	(3)
			(7 marks)

Notes: (b) (main scheme) M1 is for $(10+10e^{-\frac{5}{8}})e^{-\frac{1}{8}}$, or $\{10+\text{their}(a)\}e^{-\frac{1}{8}}$

N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0

(c)
$$1^{st}$$
 M is for $(10+10e^{-\frac{5}{8}}) e^{-\frac{T}{8}} = 3$ o.e.

 2^{nd} M is for converting $e^{-\frac{T}{8}} = k$ (k > 0) to $-\frac{T}{8} = \ln k$. This is independent of 1^{st} M.

Trial and improvement: M1 as scheme,

M1 correct process for their equation (two equal to 3 s.f.)

A1 as scheme