Write your name here Surname	Other r	names
Edexcel GCE	Centre Number	Candidate Number
Chamicty		
Advanced Unit 5: General Princi Metals and Or		
Unit 5: General Princi Metals and Or	ples of Chemistry II ganic Nitrogen Che optic assessment)	Paper Reference
Advanced Unit 5: General Princi Metals and Or (including syn	ples of Chemistry II ganic Nitrogen Che optic assessment) 3 – Afternoon	mistry

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P41215A ©2013 Pearson Education Ltd. 7/6/5/4/3/5/

Turn over 🕨

SECTION A

	nswer ALL the questions in this section. You should aim to spend no more than this section. For each question, select one answer from A to D and put a cross in you change your mind, put a line through the box $\overline{\boxtimes}$ and then mark your new a cross $\overline{\boxtimes}$.	n the box 🖂.
1	The reaction between iron and nickel(II) sulfate may be represented by the ionic equation	
	Ni ²⁺ (aq) + Fe(s) \rightarrow Ni(s) + Fe ²⁺ (aq)	
	(a) This reaction is classified as a redox reaction because	(1)
	A the nickel(II) ions are oxidized and iron acts as an oxidizing agent.	(1)
	B the nickel(II) ions are oxidized and iron acts as a reducing agent.	
	C the nickel(II) ions are reduced and iron acts as a reducing agent.	
	D the nickel(II) ions are reduced and iron acts as an oxidizing agent.	
	(b) This reaction proceeds spontaneously, therefore	(1)
	\square A E_{cell} and ΔS_{total} for this reaction must both be positive.	(- <i>)</i>
	B E_{cell} and ΔS_{total} for this reaction must both be negative.	
	\square C E_{cell} for this reaction must be positive and ΔS_{total} negative.	
	D E_{cell} for this reaction must be negative and ΔS_{total} positive.	
	(Total for Question 1 = 2 r	narks)
	Use this space for any rough working. Anything you write in this space will gai	n no credit.

3	Vai	nad	ium is classified as a transition metal. This is because vanadium
	×	Α	is a d-block element.
	\mathbf{X}	В	has incompletely filled d orbitals.
	×	C	forms stable ions with incompletely filled d orbitals.
	\mathbf{X}	D	forms stable ions in which it has different oxidation states.
			(Total for Question 3 = 1 mark)
4	Co	ppe	er(II) sulfate solution is blue. This is because
	\mathbf{X}	Α	excited electrons emit light in the blue region of the spectrum as they drop back to the ground state.
	×	В	excited electrons emit light in the red region of the spectrum as they drop back to the ground state.
	X	C	electrons absorb light in the red region of the spectrum and the residual frequencies are observed.
	×	D	electrons absorb light in the blue region of the spectrum and the residual frequencies are observed.
			(Total for Question 4 = 1 mark)
5	chl	ora	nethod of manufacturing hydrazine (N ₂ H ₄) involves the action of sodium te(I) on excess ammonia at 443 K and 50 atm. The yield is normally around 80% just 1 part per million of copper(II) ions is present, the yield drops to 30%.
	The	e m	ost likely explanation for this is the ability of copper(II) ions to
	×	A	form complex ions with ammonia.
	\mathbf{X}	В	catalyse reactions producing other nitrogen compounds.
	\mathbf{X}	C	reduce the hydrazine as it is formed.
	\mathbf{X}	D	reduce the sodium chlorate(l).
			(Total for Question 5 = 1 mark)
	Use	e th	is space for any rough working. Anything you write in this space will gain no credit.

		um forms a complex with the formula Pt(NH ₃) ₂ Cl ₂ and chromium forms a ex ion with the formula CrCl ₄ ⁻ .	
(a) Co	nsidering the shapes of these complexes,	(1)
	A 🛛	both complexes are square planar.	(1)
	B	both complexes are tetrahedral.	
	🛛 C	$Pt(NH_3)_2Cl_2$ is tetrahedral and $CrCl_4^-$ is square planar.	
	D 🛛	$Pt(NH_3)_2Cl_2$ is square planar and $CrCl_4^-$ is tetrahedral.	
(b) Co	nsidering the structures of these complexes,	(1)
	A 🛛	both complexes form stereoisomers.	
	B	neither complex forms a stereoisomer.	
	🛛 C	$Pt(NH_3)_2Cl_2$ forms a stereoisomer but $CrCl_4^-$ does not.	
	D 🛛	$CrCl_4^-$ forms a stereoisomer but $Pt(NH_3)_2Cl_2$ does not.	
(nsidering the bonding between the central atom and the ligands in these mplexes,	(4)
	A 🛛	the bonding in both complexes is dative covalent.	(1)
	🛛 B	the bonding in both complexes is ionic.	
	🖾 C	the bonding in $Pt(NH_3)_2Cl_2$ is dative covalent and in $CrCl_4^-$ is ionic.	
	D 🛛	the bonding in $Pt(NH_3)_2Cl_2$ is ionic and in $CrCl_4^-$ is dative covalent.	
		(Total for Question 6 = 3 m	arks)
U	lse th	is space for any rough working. Anything you write in this space will gain	no credit.

7 When concentrated ammonia solution is added to a green solution of chromium(III) sulfate, a green precipitate is formed which slowly dissolves in excess of the concentrated ammonia solution.

The chromium-containing species formed in these reactions are

	Green precipitate	Resulting solution
A	Cr(OH) ₃	[Cr(OH) ₆]³−
B	Cr(OH) ₃	[Cr(NH ₃) ₆] ³⁺
⊠ C	(NH ₄) ₂ CrO ₄	[Cr(OH) ₆] ^{3–}
⊠ D	(NH ₄) ₂ CrO ₄	[Cr(NH ₃) ₆] ³⁺

(Total for Question 7 = 1 mark)

- 8 Bromine reacts much faster with phenylamine than with benzene. This is because
 - A N—H bonds are weaker than C—H bonds.
 - **B** nitrogen is very electronegative.
 - **C** the benzene ring has greater electron density in phenylamine than in benzene.
 - **D** phenylamine reacts by addition whereas benzene reacts by substitution.

(Total for Question 8 = 1 mark)

- 9 X-ray diffraction provides evidence that benzene molecules have
 - **A** delocalized π electrons.
 - **B** carbon–carbon bonds that are all the same length.
 - **C** lower thermodynamic stability than molecules of 1,3,5-cyclohexatriene.
 - **D** greater thermodynamic stability than molecules of 1,3,5-cyclohexatriene.

(Total for Question 9 = 1 mark)

10	Renze	ne is nitrated using a mixture of concentrated nitric and sulfuric acids. The
10	sulfuri	
	Δ 🛛	acts as a solvent for the benzene and the nitric acid.
	B	protonates the benzene to speed up the reaction.
	🖾 C	protonates the nitric acid which acts as a base.
	D	reacts with the benzene to form a benzenesulfonic acid intermediate.
		(Total for Question 10 = 1 mark)
11		ompound shown below is found in cocoa beans and in chocolate. Which of the s listed is not present in its structure?
		$H \qquad \begin{array}{c} O \\ H \\ N \\ C \\ H \\ C \\ H \\ O \\ C \\ H_{3} \\ \end{array} \qquad \begin{array}{c} C \\ C \\ C \\ C \\ C \\ C \\ H_{3} \\ \end{array} \qquad \begin{array}{c} C \\ H_{3} \\ \end{array} \qquad \begin{array}{c} C \\ C $
	🖾 A	Alkyl
	B	Amide
	🛛 C	Amine
	🛛 D	Ketone
		(Total for Question 11 = 1 mark)
12	The di	stinguishing characteristic of combinatorial chemistry is that it involves the
	B	interaction of starting materials to form a unique product.
	🖾 C	use of catalysts.
	🖾 D	use of polymer supports.
		(Total for Question 12 = 1 mark)
	Use th	is space for any rough working. Anything you write in this space will gain no credit.
		7

(Total for Question 13 = 3 marks)

TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

(b) Identify, by name or formula, the reagent that would be used to convert B ir CuSO ₄ (aq).	nto (1)
	(1)
(c) (i) C and F are the same type of chemical species. Name this type.	(1)
(ii) Explain why C is coloured but F is colourless.	(3)
*(iii) Explain why F changes into C on shaking.	(2)
$\begin{array}{ $	11 Turn over

(i) Explain the term disproportionation.	(2)
(ii) Write an ionic equation for this reaction. State symbols are not required.	(1)
(iii) Use the relevant standard reduction (electrode) potentials, from the table on page 17 of your data booklet, to calculate the E_{cell}^{\oplus} value for this reaction, giving your answer with the appropriate sign.	(2)

*(iv) If copper(I) iodide is treated with nitric acid, rather than sulfuric acid, a blue solution is still formed but no pink solid. Use the standard electrode potentials on page 15 of your data booklet to explain this. Quote any data that you use.	
	(4)
(Total for Question 14 = 22 ma	arks)
	13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Turn over 🕨

15 Vitamin C (L-ascorbic acid) is present in fresh fruit and vegetables although prolonged cooking destroys it. The structure of ascorbic acid, C₆H₈O₆, is shown below.

(a) The amount of ascorbic acid present in a sample is determined by reacting it with a known amount of iodine. The excess iodine is then measured by titration with a solution of sodium thiosulfate, using a starch indicator. The equations for the reactions are given below.

Four 500 mg vitamin C tablets were dissolved in distilled water and the solution made up to 250 cm³ in a volumetric flask. A 25.0 cm³ portion of this solution was added to an iodine solution containing 2.00×10^{-3} moles of iodine. The resulting mixture was titrated with sodium thiosulfate solution of concentration 0.0631 mol dm⁻³. The titration was repeated and the mean (average) titre was 27.85 cm³.

(i) State the type of chemical change undergone by ascorbic acid when it reacts with iodine.

(1)

(ii) State the colour of the solution in the flask just before the starch is added to the titration mixture and state the colour change at the end-point of the titration.	(2)
(iii) Calculate the percentage by mass of ascorbic acid in the tablets. The molar mass of ascorbic acid is 176 g mol⁻¹.	(5)

16 Benzenecarboxylic acid (benzoic acid) and phenylmethanol (benzyl alcohol) are compounds which occur naturally and have a wide range of uses. For example, benzenecarboxylic acid is used as a food preservative and phenylmethanol is used as a solvent. A laboratory sequence for the preparation of these two compounds is shown below. Н HO 0 0 Step 1 Step 2 benzenecarboxylic acid Step 3 OH phenylmethanol (a) In the first step of the synthesis, benzene reacts with hydrogen chloride and carbon monoxide in the presence of aluminium chloride in an electrophilic substitution called the Gattermann-Koch reaction. The hydrogen chloride and carbon monoxide together behave as if they form the unstable species methanoyl chloride (HCOCI). (i) Explain why benzene undergoes substitution rather than addition reactions. A detailed description of the bonding in benzene is **not** required. (2)

(ii) Give the mechanism for step 1, including the formation of the electrophile.	(4)
(iii) Identify the reagents and essential conditions used in the remaining steps of the sequence. You may assume that the correct reaction temperatures are being used.	(4)
Step 2	
Step 3	

*(b) Phenol reacts faster than phenylmethanol in electrophilic substitution reaction Suggest why this is so.	ons. (4)
(Total for Question 16 =1	4 marks)
TOTAL FOR SECTION B = 50) MARKS

SECTION C

1 2 1 5 A 0 2 1

(ii)	Under suitable conditions, molecules of K react together forming a polymer, L .
	Draw the structure of L , showing two repeat units.

(2)

(iii) Name the type of polymerization that results in the formation of **L**.

(iv) State the type of naturally occurring substance which contains the same type of linkage as in the polymer **L**.

(1)

(1)

(c) If the sequence of reactions, that produces polymer **L** from tranexamic acid, is carried out starting with the *cis* isomer of tranexamic acid, an organic compound, **M**, is formed.

The low resolution nuclear magnetic resonance (nmr) spectrum of **M** has six peaks with relative heights 4:4:2:1:1:1.

The infrared (IR) spectrum of ${\bf M}$ has peaks in the region 1700–1630 cm $^{-1}$ and 3500–3140 cm $^{-1}.$

(i) The structure of **M** is shown below.

The nmr spectrum shows that the molecule, **M**, has six different hydrogen environments. Use the letters **a** to **f** to label the H atoms of **M** showing the six hydrogen environments. All thirteen hydrogen atoms should be labelled.

(ii) Explain how the IR data are consistent with the structure of **M**.

(2)

(4)

(iii) Suggest why **M** is formed from the *cis* isomer but not from the *trans* isomer.

(2)

(Total for Question 17 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 90 MARKS

	-		E	2		c .	6		ç	∞		uo	m		Ę													
	0 (8)	(18) 4.0 He	helium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Ъ	krypton 36	131.3	Xe	xenon 5.4	17771		radon 86	8	rted		_						
	7		(17)	19.0	Ŀ	fluorine 9	35.5	บ	cniorine 17	79.9	Br	bromine 35	126.9	_	iodine 53	[010]	[014]	astatine oc	6	been repo		175		lutetium	71	[257]	Ļ	lawrencium 103
	9		(16)	16.0	0	oxygen R	32.1	S	sultur 16	79.0	Se	selenium 34	127.6	Te	tellurium 57	12001		polonium 84	64	116 have l	Iticated	173	Ч,	ytterbium	70	[254]	No	nobelium 102
	ß		(15)	14.0	z	nitrogen 7	31.0	₽.	pnospnorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	0 000		bismuth	6	nbers 112-	but not fully authenticated	169	E T	thulium	69	[256]	РW	mendelevium 101
	4		(14)	12.0	υ	carbon 6	28.1		14	72.6	Ge	germanium 32	118.7	Sn	tin 20	207.2		Lead 80	70	atomic nur	but not fi	167	Ľ	erbium	68	[253]	EB	
	ĸ		(13)	10.8	B	boron 5	27.0	AI	aluminium 13	69.7	Ga	gallium g	114.8	Ľ	indium 10	12		Ę		Elements with atomic numbers 112-116 have been reported		165	H	holmium	67	[254]	Es	einsteinium 99
ents							-		(12)	65.4	Zn	zinc 30	112.4	pC	cadmium 18	9 00 6	Ha	mercury	00	Elem		163	2	dysprosium	99	[251]	უ	californium einsteinium 98 99
Elem									(11)	63.5	Cu	copper 29	107.9	Ag	silver 17					[272] Rg	roentgenium 111	159	f	۶	Ç9	[245]	Ŗ	
I he Periodic Tadie of Elements									(10)	58.7	İŻ	nickel 28	106.4	ЪЧ	palladium	105 1		platinum 78	0	[271] Ds	ium	157	РIJ	gadolinium	64	[247]	с С	aurium 96
									(6)	58.9	ĉ	cobalt 27	102.9	Rh	rhodium 15	107 2		iridium 77	:	[268] Mt	meitnerium 109	152	Ē	Ε	63	[243]	Am	americium 95
		1.0 Hvdrogen	-						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium	190.2	ž, č	osmium 76	0,	[277] Hs	۶	150	E S	samarium	79	[242]	Pu	plutonium 94
le re									(2)	54.9	Mn	manganese 25	[98]			186.7	7.00	rhenium 75	2	[264] Bh	bohrium 107	[147]	E C	promethium	61	[237]	Np Pu Am	neptunium 93
_				nass	lo	umber			(9)	52.0	ۍ	Ę	95.9	Mo	molybdenum technetium	183 8	N	tungsten 7.4	14	[266] Sg	seaborgium 106	144	PN	praseodymium neodymium promethium	60			uranium 1 92
			Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9		niobium r	180.0	ĥ	tantalum 72	2	[262] Db	ε	141	P L	oraseodymium	6¢	[231]		protactinium 91
				relativ	atoi	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium	178 5	Hf	hafnium 72	7/	[261] Rf	rutherfordium 104	140	٩	_	δč	232		thorium p 90
								(3)		45.0	Sc	scandium 21	88.9		yttrium 20	128.0	***	La lanthanum 57		[227] AC*	E		ş		- 11			
	2		(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	_	87.6	Sr	strontium 3.8	137 3		barium l	R	[226] Ra	radium 88		* Lanthanide series	* Actinide series				
	-		(1)	6.9		E	23.0		11 11	39.1	¥	potassium 19	85.5		rubidium 37	137 9	ر بر س	caesium جج	r l	[223] Fr	francium 87		* Lanthé	* Actinic				
				-																		I						

The Periodic Table of Elements

P 4 1 2 1 5 A 0 2 4 2 4