Oxford Cambridge and RSA

GCE

Chemistry A

Unit H432/01: Periodic table, elements and physical chemistry Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument
A	Incorrect response
AOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
Rounding error	

SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Benefit of doubt not given
NBOD	Noted but no credit given
I	Ignore

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	
$\mathbf{1}$	\mathbf{C}	$\mathbf{1}$	AO2.2	
$\mathbf{2}$	\mathbf{C}	$\mathbf{1}$	AO2.2	
$\mathbf{3}$	\mathbf{B}	$\mathbf{1}$	AO2.2	
$\mathbf{4}$	\mathbf{D}	$\mathbf{1}$	AO2.4	
$\mathbf{5}$	\mathbf{A}	$\mathbf{1}$	AO1.2	
$\mathbf{6}$	\mathbf{C}	$\mathbf{1}$	AO1.2	
$\mathbf{7}$	\mathbf{D}	$\mathbf{1}$	AO2.3	
$\mathbf{8}$	\mathbf{A}	$\mathbf{1}$	AO1.1	
$\mathbf{9}$	\mathbf{B}	$\mathbf{1}$	AO1.2	
$\mathbf{1 0}$	C	$\mathbf{1}$	AO2.6	
$\mathbf{1 1}$	\mathbf{A}	$\mathbf{1}$	AO1.2	
$\mathbf{1 2}$	\mathbf{D}	$\mathbf{1}$	AO2.5	
$\mathbf{1 3}$	B	$\mathbf{1}$	AO1.1	
$\mathbf{1 4}$	C	$\mathbf{1}$	AO1.1	
$\mathbf{1 5}$	D	$\mathbf{1}$	AO1.1	
		$\mathbf{1 5}$		

SECTION B

Question			Answer	Marks	Guidance
16	(a)	(i)	(enthalpy change when) 1 mole of gaseous ions react OR 1 mole of hydrated/aqueous ions are formed \checkmark gaseous ions dissolve in water OR gaseous ions form aqueous/hydrated ions \checkmark	2	IGNORE `energy released’ OR ‘energy required’
	(a)	(ii)		4	Correct species AND state symbols required for each mark. (mark independently) On 2nd line, ALLOW $\mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{aq})$ (i.e. F^{-}hydrated before Ca^{2+}) On 3rd line, ALLOW $\mathrm{CaF}_{2}(\mathrm{aq})$ DO NOT ALLOW when first seen but ALLOW ECF for ' 2' missing and for use of the following ions $\begin{aligned} & \mathrm{Fl}^{-} \\ & \mathrm{F}_{2}^{-} \\ & \mathrm{Ca}^{+/ 3+} \end{aligned}$
Question		Answer	Marks	Guidance	
:---:	:---:	:---:	:---:	:---:	
(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=-504\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks IF answer $=\mathbf{- 1 0 0 8}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 1 mark $\begin{aligned} & 2 \times \Delta_{\mathrm{hyd}} H\left(\mathrm{~F}^{-}\right) \\ & =[-2630+13]-(-1609) \end{aligned}$ OR $-2617+1609$ OR -1008 ($\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)^{\checkmark}$ $\Delta_{\text {hyd }} H\left(\mathrm{~F}^{-}\right)=\frac{-1008}{2}=-504 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	IF alternative answer, check to see if there is any ECF credit possible using working below. '-' sign is needed. COMMON ERRORS for 1 mark: (+)2694: signs all reversed -2113: sign wrong for-1609 -2126: sign wrong for 2630 -517: sign wrong for 13 +504 : sign wrong IF ALL 3 relevant values from the information at the start of Q16a(iii) have NOT been used, award zero marks unless one number has a transcription error, where 1 mark can be awarded ECF	
(a)	(iv)	Correct comparison of $\Delta_{\text {hyd }}$ linked to sizes $\Delta_{\text {hyd }} H\left(\mathrm{~F}^{-}\right)$more negative/exothermic (than $\Delta_{\text {hyd }} H(\mathrm{C} t)$) AND F^{-}has smaller size (than Cl^{-}) \checkmark Comparison of attraction between ions and water F^{-}OR smaller sized ion linked to greater attraction to $\mathrm{H}_{2} \mathrm{O} \checkmark$	2	ORA IGNORE 'atomic' before radius when comparing size of ions IGNORE charge density IGNORE electronegativity IGNORE nuclear attraction DO NOT ALLOW 'forms stronger hydrogen bonds with water' OR 'forms stronger van der Waals' forces with water' ALLOW 'forms bonds' for attraction' DO NOT ALLOW F^{-}greater attraction to $\mathrm{H}_{2} \mathrm{O}$ if given as larger ion Assume 'F' / 'Fluorine' means 'ions' but DO NOT ALLOW ' F molecules'	
Question		Answer	Marks	Guidance	
:---:	:---:	:---:	:---:	:---:	
(b)	(i)	Average bond enthalpy Breaking of one mole of bonds In gaseous molecules \checkmark	2	IGNORE energy required OR energy released IGNORE heterolytic / homolytic DO NOT ALLOW bonds formed DO NOT ALLOW ionic bonds IGNORE species for molecules	
(b)	(ii)	FIRST, CHECK ANSWER ON ANSWER LINE IF answer = (+) 158 award 3 marks $\begin{aligned} & \text { Bond enthalpy of F-F } \\ & (\Delta H \text { for }(\mathrm{O}-\mathrm{H}) \text { bonds broken }=) \\ & 1856 \text { OR } 4 \times 464\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \\ & (\Delta H \text { for bonds made }=) 2770\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \text { OR } 498 \text { AND } 2272\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \text { OR } 498 \text { AND } 4 \times 568\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \\ & \\ & \text { (bond enthalpy) F-F }=\frac{2770-1856-598}{2} \\ & =(+) 158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark} \checkmark \end{aligned}$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES IGNORE sign IGNORE sign ALLOW ECF Common errors Award 2 marks for; -158 (Wrong sign) (\pm)316 (No $\div 2$) (+) 622 (use of 2×464) (+) 457 (omitting - 598) (+) 756 (use of +598) Award 1 mark for; (+) 970 (use of 2×464 and +598)	
		Total	15		
	uesti	Answer	Marks	Guidance	
:---:	:---:	:---:	:---:	:---:	
17	(a)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive conclusion which uses quantitative results for determination of the reaction orders. AND Determines k from correct rate equation. AND Proposes the two-step mechanism which adds up to overall equation with no intermediate electrons. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. The working for the scientific content is clearly linked to the experimental evidence. Level 2 (3-4 marks) Reaches a sound, but not comprehensive, conclusion based on the quantitative results. AND Correctly identifies the orders and rate equation. AND Calculates the rate constant OR Proposes the two-step mechanism with reactants of first step matching rate equation or matches orders There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. The working for the scientific content is clearly linked to the experimental evidence.	6	Indicative scientific points may include: Orders and rate equation - $\mathrm{Fe}^{3+} 1$ st order AND I- 2nd order OR rate $=k\left[\mathrm{Fe}^{3+}\right]\left[1^{-}\right]^{2}$ - Supported by experimental results Calculation of \boldsymbol{k}, including units - k correctly calculated AND correct units, e.g. $k=\frac{8.10 \times 10^{-4}}{\left(4.00 \times 10^{-2}\right) \times\left(3.00 \times 10^{-2}\right)^{2}}=22.5$ - $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ OR mol${ }^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ Two-step mechanism - Two steps add up to give overall equation - Slow step/ rate-determining step matches stoichiometry of rate equation. - Each step balances by species and charge e.g. $\mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{Fel}_{2}\right]^{+} \quad$ SLOW $\mathrm{Fe}^{3+}(\mathrm{aq})+\left[\mathrm{Fel}_{2}\right]^{+} \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \quad$ FAST $\mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}^{-}(\mathrm{aq})$ SLOW $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{I}_{2}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \quad$ FAST $\begin{array}{ll} \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{II}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{+}+\mathrm{I}_{2} & \text { SLOW } \\ \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Fe}^{+} \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq}) & \text { FAST } \end{array}$ There may be other feasible possibilities	
Question		Answer	Marks		
:---	:---	:---	:---	:---	
Level 1 (1-2 marks) Attempts to reach a simple conclusion for orders AND Attempts a relevant rate equation. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant The working for the scientific content is clearly linked to the experimental evidence. $\mathbf{0}$ marks No response or no response worthy of credit.					
Quest		Answer	Marks	Guidance	
:---:	:---:	:---:	:---:	:---:	
(b)	(i)	 Gradient Correct gradient calculated from best-fit straight line drawn within the range $\pm 800 \rightarrow \pm 1040 \checkmark$ E_{a} calculation $\begin{aligned} & E_{a}=(-) \text { gradient } \times 8.314 \checkmark \\ & \text { e.g. from } \pm 820, E_{a}=(+) 6817.48\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \end{aligned}$ E_{a} to 3 SF AND use of 10^{-3} for gradient \checkmark e.g. from $\pm 820, E_{a}=(+) 6820\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$	3	ALLOW lines which do not intercept y-axis ALLOW mark for gradient if correct working shown within E_{a} calculation without gradient being calculated separately ALLOW $\pm 0.8(00) \rightarrow \pm 1.04(0)$ (omission of 10^{-3}) ALLOW ECF for calculated gradient x 8.314 If value of gradient not shown separately, ALLOW E_{a} in range: $6650 \rightarrow 8650$ OR $6.65 \rightarrow 8.65$ (omission of 10^{-3}) This mark subsumes gradient mark NOTE: Omission of 10^{-3} can get 1 st 2 marks	
Question	Answer	Marks	Guidance		
:---:	:---:	:---:	:---:		
(ii)	Intercept shown on graph could be by extrapolation of line, or label on y axis AND In A linked to intercept value e.g. $\ln A=31.4 \checkmark$ $\text { e.g. } A=e^{31.4}=4.33 \times 10^{13}$	2	$\text { ALLOW } y=31.4$ ALLOW substitution of correct values of In k and $1 / \mathrm{T}$ into $\ln k=-E_{a} / R \times 1 / T+\ln A$ to give a value of $\ln A$ which approximately matches the intercept if given $\ln A=\ln k+\left(E_{d} / R \times 1 / T\right)$ Calculation of $A=e^{\ln A}$ OR $e^{\ln k+(E a / R \times 1 / T)}$ ALLOW ECF from incorrect In A $\begin{aligned} & e^{31.2}=3.55 \times 10^{13} \\ & e^{31.3}=3.92 \times 10^{13} \\ & e^{31.35}=4.12 \times 10^{13} \\ & e^{31.45}=4.56 \times 10^{13} \\ & e^{31.5}=4.79 \times 10^{13} \\ & e^{31.6}=5.29 \times 10^{13} \\ & e^{31.7}=5.85 \times 10^{13} \\ & e^{31.8}=6.46 \times 10^{13} \\ & e^{31.9}=7.14 \times 10^{13} \\ & e^{32.0}=7.9(0) \times 10^{13} \\ & e^{32.1}=8.73 \times 10^{13} \end{aligned}$ IF 2 DP answer given, check rounding from calculator value, not 3 DP values given $\mathrm{Eg} \mathrm{e}^{31.7}=5.8497 \times 10^{13} \text { and }=5.8 \times 10^{13}(2 S F)$		
	Total	11			
Question		Answer	Marks	Guidance	
:---:	:---:	:---:	:---:	:---:	
18	(a)	$\begin{aligned} K_{\mathrm{c}}= & \frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.} \checkmark \\ & \text { Units }=\mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark \end{aligned}$	2	Must be square brackets IGNORE state symbols ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ ALLOW mol dm ${ }^{-3}$ as ECF from inverted K_{c} expression	
	(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.2 (mol) award 4 marks Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $[\mathrm{NO}]=\frac{0.40}{4.0}=0.1(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ AND $\left[\mathrm{O}_{2}\right]=\frac{0.80}{4.0}=0.2(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\begin{aligned} & {\left[\mathrm{NO}_{2}\right]^{2}=45 \times 0.10^{2} \times 0.20 \mathrm{OR}=0.09(0) \checkmark} \\ & {\left[\mathrm{NO}_{2}\right]=\sqrt{ }\left(45 \times 0.10^{2} \times 0.20\right) \mathbf{O R}=0.3(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{\vee}} \\ & \text { amount } \mathrm{NO}_{2}=0.30 \times 4=1.2(\mathrm{~mol}) \end{aligned}$	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value Ignore rounding errors after second significant figure 1st mark is for realising that concentrations need to be calculated. ALLOW ECF Correct numerical answer with no working would score all previous calculation marks Making point 2 subsumes point 1 Making point 3 subsumes points 2 and 1 Common errors $9.6=3$ marks mol of NO and O_{2} used $0.36=3$ marks mol of NO_{2} calculated from $\left[\mathrm{NO}_{2}\right]^{2}$ $2.4=2$ marks mol of NO and O_{2} used and no mol of NO_{2} calculated	
Question		Answer	Marks	Guidance	
:---:	:---:	:---:	:---:	:---:	
(c)	(i)	Exothermic AND K_{p} decreases as temperature increases \checkmark	1	ALLOW K_{c} for K_{p} ALLOW Equilibrium shifts to left hand side as temperature increases	
(c)	(ii)	Equilibrium shift (Equilibrium position) shifts to right / forward / towards products \checkmark Effect of increased pressure on K_{p} expression Ratio (in K_{p} expression) decreases OR Denominator/bottom of K_{p} expression increases more (than numerator/top) Equilibrium shift (K_{p} expression) Ratio (in K_{p} expression) increases to restore K_{p} OR Numerator/top of K_{p} expression increases to restore $K_{p} \checkmark$	3	FULL ANNOTATIONS NEEDED ALLOW K_{c} for K_{p} throughout the response. ALLOW K_{p} (initially) decreases for second marking point IF K_{p} is seen to be restored later in the process. ALLOW more NO_{2} / product formed to restore K_{p} ALLOW ratio adjusts to restore K_{p}	
		Total	10		

Quest	Answer	Marks	Guidance	
(c)	Global rules - C and O electrons must be shown differently, e.g. \cdot for C and \times for O - Na electrons shown with different symbol MARKING Bonding around central C atom \checkmark - 4 electrons for C shown as - $\mathbf{O R} \times$ - 4 electrons for O , different from C as - $\mathrm{OR} \times$ - $\mathrm{C}=\mathrm{O}$ bond with 2 C electrons AND 2 O electrons - Two C-O bonds with 1 C electron AND 10 electron Non-bonded (nb) electrons around 30 atoms \checkmark - C=O oxygen has 4 nb ' O ' electrons - Each C-O oxygen has 5 nb 'O' electrons AND 1 'extra' electron with different symbol	2	NOT REQUIRED - Charge ('2-') IGNORE incorrect charges - Brackets - Circles IGNORE inner shells ALLOW rotated diagram ALLOW diagram with missing C or O symbols. In C=O bond, ALLOW sequence In C-O bond, ALLOW 'extra' electron with different symbol for O electron ALLOW non-bonding electrons unpaired ALLOW 'extra' electron as - OR \times if it has been labelled 'extra electron' or similar	
	Total	11		
	uest	Answer	Marks	Guidance
:---:	:---:	:---:	:---:	:---:
20	(a)	ASSUME trend is down the group (unless stated otherwise) Forces London forces increase OR induced dipole(-dipole) interactions increase \checkmark Reason (Number of) electrons increases \checkmark Link to energy and particles More energy to break intermolecular forces OR to break London forces OR to break induced dipole(-dipole) interactions \checkmark	3	FULL ANNOTATIONS MUST BE USED \qquad ALLOW reverse argument throughout IGNORE van der Waals'/vdW forces DO NOT ALLOW hydrogen bonds OR permanent dipole(dipole) interactions for first and third marking points ALLOW more (electron) shells DO NOT ALLOW covalent bonds break

Question		Answer	Marks	Guidance	
(d)	(iv)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF B = RblO ${ }_{3}$ AND relative formula mass = 260.5 award 5 marks IF relative formula mass $\mathbf{=} \mathbf{2 6 0 . 5}$ award 4 marks $\begin{aligned} & n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right) \text { in titration } \\ & \quad=\frac{0.150 \times 23.80}{1000}=3.57 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$ $n\left(\mathrm{IO}_{3}^{-}\right)$in titration $=\frac{3.57 \times 10^{-3}}{6}=5.95 \times 10^{-4}(\mathrm{~mol})$ $n\left(\mathrm{IO}_{3}^{-}\right)$in original $250 \mathrm{~cm}^{3}$ $=10 \times 5.95 \times 10^{-4}=5.95 \times 10^{-3}(\mathrm{~mol}) \checkmark$ Relative formula mass of B $=\frac{1.55}{5.95 \times 10^{-3}}=260.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Formula of B (must be derived from relative formula mass) Iodate of Group 1 metal that most closely matches calculated molar mass of \mathbf{B} Formula from $260.5=\mathrm{RbIO}_{3} \checkmark$	5	ALLOW ECF from incorrect mean titre in (a)(i) ECF from $n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ in titration ALLOW a two-step calculation $n\left(\mathrm{I}_{2}\right)=n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right) \div 2 \text { and } n\left(\mathrm{IO}_{3}^{-}\right)=n\left(\mathrm{I}_{2}\right) \div 3$ ECF from $n\left(\mathrm{IO}_{3}^{-}\right)$in titration ECF from $n\left(\mathrm{IO}_{3}^{-}\right)$in original $250 \mathrm{~cm}^{3}$ IF scaling $\times 10$ is omitted, ALLOW ECF from $n\left(\mathrm{IO}_{3}^{-}\right)$in titration ALLOW ECF from incorrect RFM of \mathbf{B} provided metal is from Group 1 ALLOW RbIO3- DO NOT ALLOW RbIO_{3} without relative formula mass value. DO NOT ALLOW 260.4 (without working) and RbIO_{3} IF $\mathbf{B}=\mathrm{RbIO}_{3}$ AND relative formula mass $=261$ award 5 marks	
		Total	20		
Question			Answer	Marks	Guidance
:---:	:---:	:---:	:---:	:---:	:---:
21	(a)		$\begin{aligned} & \text { Ni: } \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2} \checkmark \\ & \mathrm{Ni}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} \checkmark \end{aligned}$	2	ALLOW 4s before 3d, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ ALLOW $1 \mathrm{~s}^{2}$ written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice) ALLOW upper case D, etc and subscripts, e.g. $4 \mathrm{~S}_{2} 3 \mathrm{D}_{8}$ ALLOW for Ni^{2+} \qquad $.4{ }^{0}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake
	(b)	(i)	Circuit: complete circuit AND voltmeter AND salt bridge linking two half-cells \checkmark Half cells: Pt AND ${ }^{-}$AND I_{2} Ni AND Ni^{2+} Standard conditions: $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions AND $298 \mathrm{~K} / 25^{\circ} \mathrm{C} \downarrow$	4	Voltmeter must be shown AND salt bridge must be labelled ALLOW small gaps in circuit ALLOW half cells drawn either way around IGNORE 2 before $I^{-}(\mathrm{aq})$ DO NOT ALLOW $\mathrm{I}_{2}(\mathrm{~g})$ OR $\mathrm{I}_{2}(\mathrm{~s})$ OR $\mathrm{I}_{2}(\mathrm{l})$ ALL conditions required BUT ALLOW $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ if omitted here but shown for just one solution in diagram Look on diagram in addition to answer lines IGNORE pressure Not relevant for this cell DO NOT ALLOW 1 mol for concentration
	(b)	(ii)	$E=0.79(\mathrm{~V}) \checkmark$	1	IGNORE sign
	(c)	(i)	$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$	1	ALLOW multiples IGNORE state symbols, even if wrong

Question	Answer	Marks	Guidance
			Further guidance on use of wedges - Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': - For bond into paper, ALLOW: $\because \prime \prime \prime \prime \prime \prime \prime \prime \prime, ~ \ddots, ~ \ddots, ~ \prime \prime, \ldots$ - ALLOW following geometry:
	Total	18	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

