

General Certificate of Education (A-level) June 2011

Chemistry
CHEM4
(Specification 2420)
Unit 4: Kinetics, Equilibria and Organic Chemistry

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^0]Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question	Marking Guidance	Mark	Comments
1(a)	C	1	
	A	1	
	D	1	
1(b)(i)	Bromocresol green	1	Allow wrong spellings
1 (b)(ii)	Purple to yellow	1	Must have both colours: Purple start - yellow finish

Question	Marking Guidance	Mark	Comments
2(a)(i)	- log $\left[\mathrm{H}^{+}\right]$	1	penalise missing [$]$ here and not elsewhere
2(a)(ii)	$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$	1	Allow () brackets, but must have charges
2(a)(iii)	Mark independently from a(ii) $\left[\mathrm{H}^{+}\right]=10^{-13.72}=1.905 \times 10^{-14}$ $\mathrm{~K}_{\mathrm{w}}=1.905 \times 10^{-14} \times 0.154==(2.93-2.94) \times 10^{-15}$	1	If wrong no further mark
2(b)(i)	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$	1	Must have charges and all brackets, allow () Acid/salt shown must be $\mathrm{CH}_{3} \mathrm{COOH}$ not HA and correct formulae needed

2(b)(ii) In pH values penalise fewer than 3 sig figs each time but allow more than 2 dp

For values above 10, allow 3sfs - do not insist on 2 dp

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$	1	Allow HA
$\left(\left[\mathrm{H}^{+}\right]^{2}=1.75 \times 10^{-5} \times 0.154=2.695 \times 10^{-6}=2.70 \times 10^{-6}\right)$	1	If $\sqrt{ }$ shown but not done gets $\mathrm{pH}=5.57$ $($ scores 2$)$
$\left[\mathrm{H}^{+}\right]=1.64 \times 10^{-3}$	1	Allow mark for pH conseq to their $\left[\mathrm{H}^{+}\right]$here $\mathrm{pH}=2.78$ or 2.79

2(c)(i)	In $\mathbf{p H}$ values penalise fewer than 3 sig figs each time but allow more than $\mathbf{2 d p}$ For values above 10, allow 3sfs - do not insist on 2 dp		
	```M1 Initially mol OH}=(10\times1\mp@subsup{0}{}{-3})\times0.154 and mol HA = (20 \times10-3) \times 0.154 or mol OH}=1.54\times1\mp@subsup{0}{}{-3}\mathrm{ and mol HA = 3.08 }\times1\mp@subsup{0}{}{-3```	1	
	M2 $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$or with numbers	1	Allow Henderson Hasselbach $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
	M3 mol ethanoic acid left $=($ mol ethanoate ions $)=1.54 \times 10^{-3}$ $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \quad$ or $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ scores M1, M2 and $\mathbf{M} \mathbf{3}$	1	If either mol acid in mixture or mol salt wrong - max 2 for M1 and M2   Any mention of $\left[\mathrm{H}^{+}\right]^{2}$ - max 2 for M1 and M3
	M4 pH $\left(=-\log 1.75 \times 10^{-5}\right)=4.76$ or 4.757	1	Not 4.75
	If no subtraction (so mol ethanoic acid in buffer =original mol) $\mathrm{pH}=4.46$ scores 2 for M 1 and M 2 If $\left[\mathrm{H}^{+}\right]^{2}$ used, $\mathrm{pH}=3.02$ scores 2 for M1 and M3		

## 2(c)(ii) In pH values penalise fewer than $\mathbf{3}$ sig figs each time but allow more than $\mathbf{2} \mathbf{d p}$ <br> For values above 10, allow 3sfs - do not insist on 2 dp

M1 XS mol KOH $\left(=\left(20 \times 10^{-3}\right) \times 0.154\right)=3.08 \times 10^{-3}$	1	If no subtraction: max 1 for correct use of volume   No subtraction and no use of volume scores zero   If wrong subtraction or wrong moles   Can only score M2 and M3 for process
M2 $\left[\mathrm{OH}^{-}\right]=3.08 \times 10^{-3} \times \frac{10^{3}}{60}=0.0513(3)$	1	Mark for dividing their answer to M1 by correct volume (method mark)   If no volume or wrong volume or multiplied by volume, max 2 for $\mathbf{M 1}$ and M3 process
$\begin{array}{r} \text { M3 }\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.05133}\left(=1.948 \times 10^{-13} \text { to } 1.95 \times 10^{-13}\right) \\ \text { or } \mathrm{pOH}=1.29 \end{array}$	1	Mark for $\mathrm{K}_{\mathrm{w}}$ divided by their answer to M2   If pOH route, give one mark for $14-\mathrm{pOH}$
M4 pH = 12.7(1)	1	Allow 3sf but not 12.70
If no subtraction and no use of volume ( $\mathrm{pH}=11.79$ scores zero)   If no subtraction, $\max 1$ for correct use of volume, $\left(60 \mathrm{~cm}^{3}\right)(\mathrm{pH}=13.01$ scores 1$)$   If volume not used, $\mathrm{pH}=11.49$ (gets 2 )   If multiplied by vol, $\mathrm{pH}=10.27$ (gets 2 )		


Question	Marking Guidance	Mark	Comments
3(a)	Forward and backward reactions proceeding at equal rate	1	
	Amount (Conc or moles or proportion) of reactants and products   remain constant	1	Not "reactants and products have equal conc"


3(b)	M1 $\frac{[R]^{2}}{[P][Q]^{2}}$	Allow ( ) but must have all brackets	1	If Kc wrong can only score M3 (process mark) for dividing both $R$ and $P$ by volume)
3(c)	$\mathbf{M} \mathbf{2}[\mathrm{Q}]^{2}=\frac{[\mathrm{R}]^{2}}{\mathrm{~K}_{\mathrm{c}}[\mathrm{P}]}$	Rearrangement of correct Kc expression	1	If wrong Kc used can only score M3 for correct use of vol   If wrong rearrangement can only score max 2 for M3 and M5 for correct $\sqrt{ }$
	M3 $[Q]^{2}=\frac{(5.24 / 10)^{2}}{68.0 \times(3.82 / 10)}$	Process mark for dividing both $R$ and $P$ by volume even in incorrect expression	1	If vol missed can only score max 2 for $\mathbf{M} 2$ and M5 for correct $\sqrt{ }$   If vol used but then wrong maths can score M2 M3 and M5 for correct $\sqrt{ }$   If moles used wrongly, eg $(2 \times 5.24)$ or ( $5.24 \times 10 / 10^{3}$ )   can only score M2 and M5
	M4 $[\mathrm{Q}]^{2}=0.0106$	Correct calculation of $\mathrm{Q}^{2}$	1	
	M5 [Q] $=0.10$ (3)	Correct taking of $\sqrt{ }$	1	


3(c) cont.	Wrong rearrangement and no use of volume	zero	
	Wrong rearrangement	2 max	For Correct use of volume M3 and Correct taking of square root M5
	No use of volume	2 max   answer $=0.325$   Ignore subsequent multiplying or dividing by 10 .   0.0325 or 3.25 still score max 2	For Correct rearrangement M2 and Correct taking of square root M5
	Use of volume but maths error e.g. using $(5.24)^{2} / 10$ when should be $(5.24 / 10)^{2}$	Scores 3 also giving answer 0.325	for M2, M3 and M5
	Use of volume but Q/10 also used or $Q$ multiplied by 10 at end (i.e.muddling moles with concentration)	2 max   Gives answer 1.03	For Correct rearrangement M2 and Correct taking of square root M5
	Wrong use of moles, e.g ( $5.24 \times 2$ ) or (5.24 $\times 10 / 10^{3}$ )	2 max	For Correct rearrangement M2 and Correct taking of square root M5
	Wrong Kc used, e.g. missing powers	1 max	For Correct use of volume M3


$3(\mathrm{~d})$	Increase or more or larger	1	Allow moves to left
$3(\mathrm{e})$	Increase or more or larger	1	Allow moves to left
$3(\mathrm{f})$	Decrease or less or smaller	1	NOT allow moves left
$3(\mathrm{~g})$	No effect or unchanged or none	1	Not allow just $1 / 68.0$
$3(\mathrm{~h})$	0.0147 or 0.0148 or $1.47 \times 10^{-2}$ or $1.48 \times 10^{-2}$   Allow 0.015 or $1.5 \times 10^{-2}$   If not 0.0147, look at $3(\mathrm{c})$ for conseq correct use of their $[\mathrm{Q}]$ in   new Kc $=1.39 \times[Q]$	ignore units	




Question	Marking Guidance	Mark	Comments
4(a)(i)			Allow -CONH- or - COHN -   Mark two halves separately   lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends   Not allow - $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)-$   Ignore $n$


| 4(a)(ii) | M1 | in polyamides - H bonding | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | | Penalise forces between atoms or van der |
| :--- |
| M2 |
|  |
| M3 polyalkenes - van der Waals forces |
| M3 |
| Stronger forces (of attraction) in polyamides <br> Or H bonding is stronger <br> (must be a comparison of correct forces to score M3) |


4(b)(i)	(nucleophilic) addition elimination   Not allow $\mathrm{N}-\mathrm{H}_{2}$	1 4	Minus sign on $\mathrm{NH}_{2}$ loses M1   M2 not allowed independent of M1, but allow M1 for correct attack on C+   + rather than $\delta+$ on $\mathrm{C}=\mathrm{O}$ loses M 2   If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking, max 1 for M1   M3 for correct structure with charges but Ip on O is part of M4   only allow M4 after correct/ very close M3   For M4, ignore $\mathrm{NH}_{3}$ removing $\mathrm{H}^{+}$but lose M 4 for $\mathrm{Cl}^{-}$removing $\mathrm{H}^{+}$in mechanism,   but ignore HCl as a product
4(b)(ii)	N-methylpropanamide	1	Not N-methylpropaneamide
4(c)		1	Allow - CONH - or - COHN -
4(d)(i)	2-amino-3-hydroxypropanoic acid	1	


4(d)(ii)	  or or   Must be salts of aspartic acid	1	allow $-\mathrm{CO}_{2}^{-}$   allow $\mathrm{NH}_{2}-$
4(d)(iii)	Penalise use of aspartic acid once in $d$ (iii) and d(iv)	1	```allow \(-\mathrm{CO}_{2} \mathrm{H}\) allow \({ }^{+} \mathrm{NH}_{3}-\) don't penalize position of + on \(\mathrm{NH}_{3}\)```
4(d)(iv)	Penalise use of aspartic acid once in d (iii) and d(iv)   $(\mathrm{Br})$	1	```allow \(-\mathrm{CO}_{2}^{-}\) must show C-N bond don't penalize position of + on \(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\)```


Question	Marking Guidance	Mark	Comments
5(a)	Benzene-1,2-dicarboxylic acid	1	Allow 1,2-benzenedicarboxylic acid
5(b)		1	Must show all bonds including trailing bonds Ignore $n$
5(c)(i)	$\begin{aligned} & 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$1$	NB Two ethanols but only one water
5(c)(ii)	6 or six	1	
5(c)(iii)		1	Ignore overlap with O to the left or H to the right, but must only include this one carbon. either or allow both (as they are identical)


5(d)		$\begin{gathered} 1 \\ \text { LHS } \\ \\ 1 \\ \text { RHS } \end{gathered}$	Allow + on C or O in   Dot must be on O in radical
5(e)(i)	Rate $=k[D E P]$	1	Must have brackets but can be ( )
5(e)(ii)	Any two of   - experiment repeated/continued over a long period   - repeated by independent body/other scientists/avoiding bias   - investigate breakdown products   - results made public	2 Max	Not just repetition   Ignore animal testing


Question	Marking Guidance	Mark	Comments
6 6(a)(i)	$k=\frac{1}{\left(2.9 \times 10^{-2}\right)^{2} \times 2.3 \times 10^{-2}}$	mark is for insertion of numbers into a correctly   rearranged rate equ, $\mathrm{k}=$ etc   AE $(-1)$   swapping two numbers	
	$=0.32$ (min 2sfs)	1	
	$\mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1} \quad$ Units must be conseq to their $k$	1	Any order   If k calculation wrong, allow units conseq to   their k
6 (a)(ii)	$4.95 \times 10^{-5}$ to $4.97 \times 10^{-5}$ or $5.0 \times 10^{-5}$ (min 2 sfs)   (ignore units)	rate $=$ their $k \times 1.547 \times 10^{-4}$	
6 (b)	Step 2   One $\mathrm{H}_{2}$ (and two NO ) (appear in rate equation)   or species (in step 2) in ratio/proportion as in the rate equation	1	If wrong no further mark



7(a)(ii)	Single reagent	If wrong single reagent, $C E=$ zero   Incomplete single reagent (e.g. carbonate) or wrong formula (e.g. $\mathrm{NaCO}_{3}$ ) loses reagent mark, but mark on For "no reaction" allow "nothing"						
	Different reagents	If different tests on E and F; both reagents and any follow on chemistry must be correct for first (reagent) mark. Reagent must react: i.e. not allow Tollens on $G$ (ketone) - no reaction.   Second and third marks are for correct observations.   i.e. for different tests on $E$ and $F$, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.						
		$\mathrm{AgNO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate	water	named indicator	1	Named alcohol	Named amine or ammonia
	G ketone	no reaction	no reaction	no reaction	no effect	1	no reaction	no reaction
	H   Acyl chloride	(white) ppt	Effervescence or $\mathrm{CO}_{2}$ or fumes or exothermic	fumes	acid colour	1	Smell or fumes	fumes
	Allow iodoform test or Brady's reagent (2,4,dnph) test (both positive for G)							


7(a)(iii)	Single reagent	If wrong single reagent, $\mathrm{CE}=$ zero   Incomplete single reagent (e.g. carbonate) or wrong formula (e.g. $\mathrm{NaCO}_{3}$ ) loses reagent mark, but mark on   For "no reaction" allow "nothing"				
	Different reagents	If different tests on $E$ and $F$; both reagents and any follow on chemistry must be correct for first (reagent) mark.   Reagent must react: i.e. not allow Tollens on $G$ (ketone) - no reaction.   Second and third marks are for correct observations.   i.e. for different tests on $E$ and $F$, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.				
		$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$	Lucas test $\left(\mathrm{ZnCl}_{2} / \mathrm{HCl}\right)$	1	Penalise missing $\mathrm{H}^{+}$ but mark on
	J   Primary alcohol	goes green	decolourised / goes brown	No cloudiness	1	
	$\mathbf{K}$ Tertiary alcohol	no reaction	no reaction	Rapid cloudiness	1	
	If uses subsequent tests e.g. Tollens/Fehlings, test must be on product of oxidation					


7(b)(i)	3,3-dimethylbutan-1-ol	1	Allow 3,3-dimethyl-1-butanol
	4	1	
7 (b)(ii)	Triplet or three	1	
	5	1	Allow 2-methyl-2-pentanol
	Singlet or one or no splitting	1	


Question	Marking Guidance	Mark	Comments
8(a)	M1 Benzene is more stable than cyclohexatriene	1	more stable than cyclohexatriene must be stated or implied   If benzene more stable than cyclohexene, then penalise M1 but mark on   If benzene less stable: can score M2 only
	$\text { M2 Expected } \begin{aligned} \Delta H^{\ominus} \text { hydrogenation of } \begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{6} \text { is } 3(-120) \\ &=-360 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} \end{aligned}$	1	Allow in words e.g. expected $\Delta H^{\ominus}$ hydrog is three times the $\Delta \mathrm{H}^{\circ}$ hydrog of cyclohexene
	M3 Actual $\Delta H^{\circ}$ hydrogenation of benzene is $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (less exothermic)   or $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ different from expected	1	Ignore energy needed
	M4 Because of delocalisation or electrons spread out or resonance	1	


8(b)	No mark for name of mechanism		
	Conc $\mathrm{HNO}_{3}$   Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	1 1	If either or both conc missing, allow one; this one mark can be gained in equation
	$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$   OR $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$   OR via two equations $\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}^{+} \\ & \mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	1	Allow + anywhere on $\mathrm{NO}_{2}^{+}$
		3	M1 arrow from within hexagon to N or + on N Allow $\mathrm{NO}_{2}{ }^{+}$in mechanism   horseshoe must not extend beyond C2 to C6 but can be smaller   + not too close to C1   M3 arrow into hexagon unless Kekule   allow M3 arrow independent of M2 structure ignore base removing H in M3   + on H in intermediate loses M2 not M3


8(c)	If intermediate compound $V$ is wrong or not shown, max 4 for 8(c)		
	or Cl   M1   or chlorocyclohexane or bromocyclohexane	1	
	Reaction 3   M2 HBr   M3 Electrophilic addition	1 1	Allow M 2 and M 3 independent of each other
	Reaction 4   M4 Ammonia if wrong do not gain M5   M5 Excess ammonia or sealed in a tube or under pressure   M6 Nucleophilic substitution	1 1 1	Allow M4 and M6 independent of each other   If CE e.g. acid conditions, lose M4 and M5
8(d)	Lone or electron pair on N   Delocalised or spread into ring in $U$   Less available (to accept protons) or less able to donate (to $\mathrm{H}^{+}$)	1 1 1	No marks if reference to "lone pair on N" missing,

UMS conversion calculator www.aqa.org.uk/umsconversion


[^0]:    Further copies of this Mark Scheme are available from: aqa.org.uk

