Mark Scheme (Results)

GCE Chemistry June 2017

Paper 9CH0/02 Advanced Organic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 9CHO_02_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is D (free radical substitution) A is not correct because electrophilic addition would be the reaction mechanism between alkenes, such as ethene, and chlorine but the substance in the question is the alkane, ethane \boldsymbol{B} is not correct because electrophilic substitution involves the reactions of aromatic systems but this question refers to the reaction of the alkane, ethane \boldsymbol{C} is not correct because the mechanism of reaction between an alkane such as ethane and chlorine involves substitution and not addition	(1)

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is B (4-ethyl-3-methylheptane) A is not correct because the longest consecutive carbon chain involves the seven carbon atoms from the top left of the molecular drawing down to the bottom right which means that the stem of the name is not pentane but heptane, with the consequential effect on the numbering and length of side chains \boldsymbol{C} is not correct because the longest consecutive carbon chain involves the seven carbon atoms from the top left of the molecular drawing down to the bottom right which means that the stem of the name is not hexane but heptane, with the consequential effect on the numbering and length of side chains D is not correct because the longest consecutive carbon chain involves the seven carbon atoms from the top left of the molecular drawing down to the bottom right which means that the stem of the name is not hexane but heptane, with the consequential effect on the numbering and length of side chains	(1)

Question Number	Answer	Additional Guidance	Mark
1(c)(i)	An explanation that makes reference to the following points: - different alkanes have different boiling temperatures/points - because of (different) chain length/molar mass /strength of intermolecular forces/ number of electrons	Allow Volatility for boiling temperature Allow Different alkanes condense at different temperatures Ignore melting temperatures if given with boiling temperatures Ignore densities Accept London /dispersion /van der Waals forces Allow reference to size A comparison such as 'longer alkanes have higher boiling points' scores 2 Ignore any reference to surface area Do not award references to cracking Do not award reference to just weight/mass Do not award incorrect trend	(2)

Question Number	Answer	Additional Guidance	Mark
1(c)(ii)	Correct equation		(1)
		Example of equation:	
		$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{18} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{14} \\ & \mathrm{OR} \end{aligned}$	
		$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{18} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{4} \mathrm{H}_{10} \\ & \mathrm{OR} \end{aligned}$	
		$\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$	
		Allow	
		$\mathrm{CH}_{2}=\mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{4}$	
		Products can be given in either order	
		Do not award equations forming H_{2}	

Question Number	Answer	Mark
2(a)	The only correct answer is C (hexagonal rings within a layer) A is not correct because in the layers of graphite and graphene the carbon atoms are bonded to three other carbon atoms and not four	(1)
	B is not correct because graphite and graphene do not have pentagonal rings within their layers \boldsymbol{D} is not correct because graphene is a two-dimensional structure consisting of a single layer	

Question Number	Answer	Mark
$\mathbf{2 (b)}$	The only correct answer is D (all 120°) \boldsymbol{A} is not correct because the angles within a layer of graphite and graphene are neither 90° nor 109.5° but are all 120° \boldsymbol{B} is not correct because the angles within a layer of graphite and graphene are not 109.5° but are all 120° \boldsymbol{C} is not correct because there are no angles within a layer of graphite and graphene that are 109.5° but they are all 120°	(1)

Question Number	Answer	Mark
$\mathbf{2 (c)}$	The only correct answer is C (poor electrical conductivity) \boldsymbol{A} is not correct because both graphene and graphite are similar to diamond in having a high melting temperature \boldsymbol{B} is not correct because neither graphene nor graphite nor diamond have a precise molecular formula since they are giant molecular structures \boldsymbol{C} is not correct because graphene, graphite and diamond are all giant molecular structures	(1)

Question Number	Answer	Additional Guidance	Mark
3(a)	An explanation that makes reference to the following points: - reactivity increases down Group (7) (1) - because $(C-X)$ bond enthalpy decreases / because ($\mathrm{C}-\mathrm{X}$) bond gets weaker down Group 7	Accept reverse argument References to halogen reactivity scores (0) Do not award references to ions/halides Do not award explanation in terms of just electronegativity or $\mathrm{C}-\mathrm{X}$ dipoles Ignore references to atom size, shielding etc and references to intermolecular forces No TE on incorrect reactivity trend	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	- dipole on $\mathrm{C}-\mathrm{Br}$ bond and curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br or just beyond - curly arrow from lone pair on oxygen of hydroxide ion to carbon bonded to Br (1) - formula of transition state with correct charge, partial bonding - correct final products (1)	Dipole and curly arrow may be shown on transition state Allow curly arrow to C^{+}of carbocation Do not award if carbocation formed as intermediate Square brackets are not essential Allow charge on Br or OH of transition state Allow longer bonds for partial bonding Ignore geometry of transition state Allow NaBr product if mechanism starts with NaOH Only penalise horizontal bond from the H of OH to C in the product e.g. $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ Use of incorrect halogenoalkane loses this mark One mark max deducted for omission of charge on ions, including transition state $\mathrm{S}_{\mathrm{N}} 1$ mechanism can score M1, M2 and M4 but not M3. M2 can be awarded for curly arrow from the lone pair on the oxygen of the hydroxide ion to the C+ of the carbocation intermediate	(4)

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	Reagents: nitric acid / HNO_{3} and silver nitrate (solution) $/ \mathrm{AgNO}_{3}$ (1)	Use of hydrochloric acid/ HCl OR sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ scores (0) Do not award acidified silver nitrate If name and formula given then both must be correct Allow (very) pale yellow Do not award just white or just yellow Ignore subsequent additions of ammonia even if incorrect Result mark dependent on reagents mark or 'near miss' such as omitting to add nitric acid, using ethanolic silver nitrate, incorrect formulae	(2)

Question Number	Answer			Additional Guidance	Mark
3(c)	 (1)	 (1)	 (1)	Accept formulae in any order Award 2 if 3 correct displayed/structural formulae given Award 1 if 2 correct displayed/structural formulae given If more than 3 skeletal formulae drawn then deduct one mark for each additional formula 2-methylpropene negates a correct formula only if four formulae given View any formulae given with skeletal formula as working and ignore Ignore names even if incorrect Penalise any other alkenes such as pentenes, once only	(3)

Question Number	Answer	Additional Guidance	Mark
3(d)	An explanation that makes reference to the following points: - (only) ethanol has hydrogen bonding (and dipole-dipole and London forces) - ethene (only) has (weaker) London/ instantaneous dipole -induced dipole forces - more energy required to break the (stronger) intermolecular forces/hydrogen bonds in alcohols	Ignore references to ethanol having stronger London forces Accept dispersion /van der Waals forces A comparison is needed Allow overcome for break Allow 'heat' for energy Accept reverse argument Do not award if the more energy required is given in response to just breaking stronger London forces for ethanol Do not award M3 for covalent bonds breaking	(3)

Question Number	Answer	Additional Guidance	Mark
4(a)(i)	- conversion of pressure, volume and temperature to correct units (1) - rearrangement of ideal gas equation so $n=P V \div R T$ and calculation of n - conversion of answer into mass to 2/3 SF	Example of calculation: $\begin{aligned} & 207 \mathrm{kPa}=207000 \mathrm{~Pa} \\ & 8.98 \mathrm{dm}^{3}=0.00898 \mathrm{~m}^{3}, \\ & 20^{\circ} \mathrm{C}=293 \mathrm{~K} \\ & \mathrm{n}=\frac{207000 \times 0.00898}{8.31 \times 293}= \\ & =0.7634 \ldots \\ & =0.7634 \ldots \times 28=21.37647 \ldots \\ & =21.4 / 21(\mathrm{~g}) \end{aligned}$ Correct answer with no working scores 3 TE on both parts of the calculation	(3)

Question Number	Answer	Additional Guidance	Mark
4(a)(ii)	-The temperature increase will result in an increase in pressure because p is (directly) proportional to T (at constant volume and moles of gas)Allow $\mathrm{p} \propto \mathrm{T}$ Reference to $\mathrm{p}=\mathrm{nRT} / \mathrm{V}$	(1)	

Question Number	Answer	Additional Guidance	Mark
4(b)	An explanation that makes reference to the following points: - fewer protons (in nitrogen) - result in a weaker nuclear attraction because shielding is the same/electrons are in the same (sub)shell (in oxygen)/same number of electron shells	Reference to molecule scores (0) Accept reverse arguments in terms of oxygen Allow weaker (effective) nuclear charge Allow smaller atomic number Do not award if incorrect numbers of protons stated or if ions referred to Do not award 'charge density' Ignore references to electron	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{5 (a) (\mathbf { i })}$	Correct equation	$2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$ Accept multiples	
		Ignore catalysts and conditions if stated	

Question Number	Answer	Additional Guidance	Mark
5(a)(ii)	A description that makes reference to the following points: - adsorption of gases to catalytic surface - weakening of bonds (and chemical reaction) on catalytic surface - desorption of products from catalytic surface	Absence of reference to the catalytic surface results in a deduction of one mark Do not award absorption or "stick" Allow bonds break (and reaction occurs) on catalytic surface Ignore the type of interaction referred to between the reactants and the catalytic surface Allow 'release' of products from catalytic surface Allow de-adsorbed	(3)

Question Number	The only correct answer is A (area A) $\mathbf{5 (b)}$ B is not correct because this is the area representing the number of particles with sufficient energy to react in the absence of a catalyst \boldsymbol{C} is not correct because this area subtraction does not represent the increase in the number of particles with sufficient energy to react \boldsymbol{D} is not correct because this sum of areas represents the total number of particles with sufficient energy to react in the presence of a catalyst	Mark

Question Number	The only correct answer is $\mathbf{B}\left(2.15 \times 10^{22}\right)$ $\mathbf{5 (c)}$A is not correct because the molar mass of carbon dioxide has been used in the calculation instead of that of carbon monoxide \boldsymbol{C} is not correct because this is the number of molecules that are in one mole and not one gram of carbon monoxide Dis not correct because this is the result of incorrectly using the molar mass of carbon monoxide rather than the number of moles of carbon monoxide	Mark

Question Number	Answer		Additional Guidance	Mark
6(a)		(1) (1)	Accept skeletal, structural or displayed formulae or combination of which is clear, e.g. $-\mathrm{C}_{2} \mathrm{H}_{5}$ Brackets are not essential Ignore ' n ' Ignore orientation of side chains Ignore bond length Ignore where bond goes to for the ethyl groups Penalise lack of 'end-bonds' once only Award 1 mark max if only one repeat unit given for each polymer Ignore more than 2 repeat units	(2)

Question Number	Answer		Additional Guidance	Mark
6(b)	- $\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$ or $\mathrm{ClOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COCl}$ - $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{NH}_{2}$	(1) (1)	Accept skeletal, structural or displayed formulae Penalise use of $\mathrm{C}_{4} \mathrm{H}_{8}$ once only Penalise missing H's once only The monomers can be in either order Do not award monofunctionality	(2)

Question Number	Answer	Additional Guidance	Mark
6(c)	$\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$	Accept skeletal, structural or displayed formulae	(1)
		Allow $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COCl}$	
		Ignore connectivity	
		Allow	
		Allow use of $\mathrm{C}_{4} \mathrm{H}_{8}$ here only	
		Penalise missing hydrogens	

Question Number	Answer	Additional Guidance	Mark
6(d)(i)	Allow (1)	Diagram must be 3-dimensional with either wedges or dashes to score 2 marks Ignore orientation of group at the top Ignore vertical bond to H of OH group	(2)

Question Number	Answer	Additional Guidance	Mark
6(d)(ii)	They rotate the plane of plane-polarised light (equally) and in opposite/different directions OR Determine in which direction they rotate the plane of plane-polarised light	Allow one plane	(1)

Question Number	Answer	Additional Guidance	Mark		
6(d)(iii)	• Does not accumulate in the environment/does not occupy				
landfill					Accept answers that outline the
:---					
benefit of avoiding other means of					
disposal such as incineration, use of					
toxic chemicals	\quad (1)	Ignore just less harm to			
:---					
environment/less harm to animal					
life/less pollution/less of an					
"eyesore"/less energy to break it					
down	\quad				
:---					

Question Number	Answer	Mark
7(b)	The only correct answer is B (6) \boldsymbol{A} is not correct because four carbon atoms in the aromatic ring are non-equivalent and not just three, so the correct total of non-equivalent carbon atoms and therefore peaks is six	(1)
	C is not correct because there are two sets of equivalent carbon atoms in the aromatic ring and not just one which means that the correct total of non-equivalent carbon atoms and therefore peaks is six	Dis not correct because this is the total number of carbon atoms in antifebrin but carbon atoms 2 and 6 in the aromatic ring are equivalent, as are 3 and 5, which gives a correct total of six non- equivalent carbon atoms and therefore six peaks

Question Number	Answer	Additional Guidance	Mark
7(c)	An explanation that makes reference to the following points: - Ione pair (of electrons) from the oxygen and will interact with the delocalised ring of electrons / increase the (рі/п) electron density of the benzene ring - which increases the reactivity toward electrophiles (such as bromine)/ which means that the bromine is more easily polarised (1)	Allow reference to the Ione pair (of electrons) from the nitrogen Ignore activation of ring Do not award charge density Allow $\mathrm{Br}^{+} / \mathrm{Br}^{\delta+}$ for electrophile Allow reference to benzene as being a stronger nucleophile Do not award references to electrophilic addition	(2)

Question Number	Answer	Additional Guidance	Mark
7(d)	- conversion of moles to mass of paracetamol - conversion of answer into percentage to $2 / 3$ SF (1)	Example of calculation: $\begin{align*} & \text { (mass of paracetamol }=3.10 \times 10^{-3} \times 151 \tag{1}\\ & =0.4681(\mathrm{~g}) \\ & \%=(0.4681 \div 0.500) \times 100=93.62 \%) \\ & =94(\%) / 93.6(\%) \end{align*}$ Allow TE for second mark from incorrect molar mass as long as value derived from dividing by $0.500 / 500 \mathrm{mg}$ and percentage is less than 100\% Correct answer without working scores 2	(2)

(Total for Question 7 = $\mathbf{1 0}$ marks)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (a) (\mathbf { i })}$	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}-$		
		Accept use of $\mathrm{FeCl}_{3} / \mathrm{Fe}+\mathrm{Cl}_{2}$ Allow displayed formulae Do not award $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl}$ Ignore state symbols even if incorrect	(1)

Question Number	Answer	Additional Guidance	Mark
8(a)(ii)	- electron pair movement from ring to electrophile - formula of intermediate ion - curly arrow from $\mathrm{C}-\mathrm{H}$ bond to reform delocalised ring - correct product and equation to show regeneration of catalyst and HCl	Do not award curly arrow that ends at the CH_{3} Allow arrow starting anywhere within the hexagon 'Horseshoe' to cover at least three carbon atoms and face the tetrahedral carbon and with some part of the plus sign inside 'horseshoe' Allow Kekulé diagrams Do not award dotted bonds unless part of a 3D structure Could be shown in reaction mechanism Ignore curly arrows	(4)

Question Number	Answer	Mark		
$\mathbf{8 (b) (i)}$	The only correct answer is B (alkaline iodine solution)			
\boldsymbol{A} is not correct because this oxidising agent would react with phenylethanal and not with				
phenylethanone which is the wrong way round				
\boldsymbol{C} is not correct because test is for aldehydes and so would react with phenylethanal and not with				
phenylethanone which is the wrong way round				
\boldsymbol{D} is not correct because test is for aldehydes and so would react with phenylethanal and not with				
phenylethanone which is the wrong way round			\quad	(1)
:---				

Question Number	Answer	Additional Guidance	Mark
8(b)(ii)	An answer that makes reference to the following points: - formation of yellow/orange/red (crystalline) precipitate (1) - (Filter then) recrystallisation of products - determination of melting temperature - comparison (and hence identification) from use of database/known values	Colour and state are both required Allow solid for ppt Ignore any conditions given with the use of $2,4-$ DNPH Penalise M3 if any reference to boiling temperature Award only in the context of melting temperature of the hydrazones or as a TE of boiling temperature Max 3 out of 4 if test is only carried out with one of the carbonyls	(4)

Question Number	Answer	Additional Guidance	Mark
8(c)	- Reagent: lithium tetrahydridoaluminate((III)) /LiAlH 4 (1) - Conditions: (dry) ether/ethoxyethane (1)	Allow lithium aluminium hydride Accept sodium tetrahydridoborate /sodium borohydride/ NaBH_{4} In water/alcohol for 2 marks Ignore reference to addition of acid after use of LiAlH_{4} in dry ether Do not award with additional reagents Ignore heat The mark for conditions is dependent on correct reagent or near miss such as incorrect formula $\mathrm{LiAlH}_{3} / \mathrm{LiAlH} / \mathrm{LiAl}$	(2)

(Total Question 8 = $\mathbf{1 8}$ marks)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{9 (a)}$	Correct answer to 2 SF	Example of calculation: (Four half-lives to decrease 600 g to 37.5 g so 4×14 mins) $=56$ (mins) Penalise wrong units, e.g. " m "	(1)

Question Number	Answer		Additional Guidance	Mark
9(b)(i)	Reaction Orders: - $\mathbf{X ~ F i r s t / 1 ~}$ - \mathbf{Y} Second/2 - Z Zero/0	(1) (1) (1)	Allow "none"/"no order"	(3)

Question Number	Answer		Additional Guidance	Mark
9(b)(ii)	Marking point 1 - Rate $=k[\mathrm{X}][\mathrm{Y}]^{2}[\mathrm{Z}]^{0}$	(1)	Reactants can be in any order Z does not have to be included in the rate equation TE from (b)(i) which will apply for all four marking points	(4)
	Marking point 2 - rearrangement of rate expression Marking point 3 - calculation of value for k to $2 / 3$ SF	(1)	Example of calculation: $\mathrm{k}=\text { rate } /[\mathrm{X}][\mathrm{Y}]^{2}$ $\begin{aligned} \mathrm{k} & =\underline{2.17 \times 10^{-6}} \\ & \frac{0.00100 \times 0.00300^{2}}{} \\ & =241.11 \\ & =241 / 240 \end{aligned}$	
	Marking point 4 - units $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$	(1)	Any 'run' can be used No TE on incorrect rearrangement Allow units in any order Correct answer without working and with correct units to $2 / 3 \mathrm{SF}$ scores marking points 2,3 and 4	

Question Number	The only correct answer is D (Fourth) \boldsymbol{A} is not correct because this is the individual reaction order with respect to bromate(V) ions and with respect to bromide ions but is not the overall reaction order	Mark
$\mathbf{9 (c) (i)}$	B is not correct because this is the reaction order with respect to hydrogen ions but is not the overall reaction order C is not correct because this is the number of species in the rate equation but is not the overall reaction order	(1)

Question Number	Answer		Additional Guidance	Mark
9(c)(ii)	- rearrange rate equation so $\left[\mathrm{Br}^{-}\right]=$ - calculation of value to $2 / 3 \mathrm{SF}$	(1) (1)	Example of calculation: $\begin{aligned} {\left[\mathrm{Br}^{-}\right] } & =\frac{\text { rate }}{\mathrm{k}\left[\mathrm{BrO}_{3}-\right]\left[\mathrm{H}^{+}\right]^{2}} \\ & =0.255 / 0.26\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ Correct answer without working to 2/3 SF scores 2 marks If units given then must be correct No TE on incorrect rearrangement	(2)

	- calculation of all three $1 / \mathrm{T}$ values $\times 10^{-3}$ - calculation of all three $\ln \mathrm{k}$ values - axes: correct way round, labelled, suitable scale - all points plotted correctly, with best-fit straight line(1) - calculation of gradient with sign - units of gradient - use of gradient to calculate activation energy	$\begin{aligned} & (3.41), 3.30,3.19,3.10,(3.00) \\ & (-9.75),-8.70,-7.55,-6.60, \\ & (-5.58) \\ & \text { Allow omission of end zero } \end{aligned}$ Penalise more than 3SF once only Plotted points must cover at least $1 / 2$ the graph paper on each axis Do not award 1/t Allow $\pm 1 / 2$ square Gradient $=-10200 \quad$ Allow ± 500 Allow this mark if the value is seen in the E_{a} calculation K $\begin{aligned} \mathrm{E}_{\mathrm{a}} & =10200 \times 8.31 / 1000 \\ & =(+) 84.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ Final answer must be positive and in the range (+) $80.6-88.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow value given in $\mathrm{J} \mathrm{mol}^{-1}$ but then these units are essential Ignore SF for gradient and activation energy values	
(Total for Question 9 = 18 marks)			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

