

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Chemistry (6CH01) Paper 01 The Core Principles of Chemistry

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 46656_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	В		(1)

Question Number	Correct Answer	Reject	Mark
2	С		(1)

Question Number	Correct Answer	Reject	Mark
3	D		(1)

Question Number	Correct Answer	Reject	Mark
4	D		(1)

Question Number	Correct Answer	Reject	Mark
5	В		(1)

Question Number	Correct Answer	Reject	Mark
6	В		(1)

Question Number	Correct Answer	Reject	Mark
7	В		(1)

Question Number	Correct Answer	Reject	Mark
8a	A		(1)

Question Number	Correct Answer	Reject	Mark
8b	В		(1)

Question Number	Correct Answer	Reject	Mark
8c	D		(1)

Question Number	Correct Answer	Reject	Mark
9	D		(1)

Question Number	Correct Answer	Reject	Mark
10	A		(1)

Question Number	Correct Answer	Reject	Mark
11	Α		(1)

Question Number	Correct Answer	Reject	Mark
12	A		(1)

Question Number	Correct Answer	Reject	Mark
13	D		(1)

Question Number	Correct Answer	Reject	Mark
14	С		(1)

Question Number	Correct Answer	Reject	Mark
15	D		(1)

Question Number	Correct Answer	Reject	Mark
16a	С		(1)

Question Number	Correct Answer	Reject	Mark
16b	С		(1)

Question Number	Correct Answer	Reject	Mark
17	В		(1)

Section **B**

Question Number	Acceptable Answers	Reject	Mark
18a(i)	Any two of O^+ , O^{2+} , O_2^+ , O_2^{2+} (1) for each correct ion ALLOW $^{16}O^+$, $^{16}O^{2+}$, $(^{16}O)_2^+$, $(^{16}O)_2^{2+}$ $^{16}O_2^+$, $^{16}O_2^{2+}$ $O=O^+/O=O^{2+}$ for O_2 ions Added mass numbers which describe a diatomic ion eg $^{32}O_2^+$ Added round or square brackets	O^{-} O^{2-} Ions of O_{3} Incorrect mass numbers eg 32 O^{+} Added incorrect atomic numbers Eg $^{16}O^{+}$ 9	(2)

Question Number	Acceptable Answers	Reject	Mark
18a(ii)	The magnetic field/ electromagnet/ electromagnetic field OR Deflection by magnetic field ALLOW Deflection and magnetic field	Gravitational field Just deflector/deflection Electric field Vacuum and magnetic field	(1)
		Detector/ detection	

Question Number	Acceptable Answers	Reject	Mar k
18a(iii)	Two curved lines going towards the detector region with at least one hitting the detector ALLOW Section of straight line before curve starts if magnetic field position is not shown Line may go up very slightly before it curves down, probably to keep it clear of lower line.	Straight lines Curvature away from detector/ concave curvature Line turning back upwards	(2)
	(1)		
	Labelling of paths depends on ions chosen:		
	Heavier ion shown as less deflected OR O^{2+} more deflected than O_2^+ OR Ion with lower charge shown as less deflected	Species which are not ions of oxygen	
	ALLOW Ions with negative charges (as already penalised in (i)) (1)		
	If chosen ions are O^+ and O_2^{2+} they will not be separated – answer must make this clear		
	(magnetic fredd) (magnetic fredd) heavier ion lighter ion or charged ion charged ion		

Question Number	Acceptable Answers		Reject	Mark
18(b)	Look at final answer 16. 004 scores (2) 16.00445 scores (1) Correct expression with incorrect final answer scores (1) (16x99.759 + 17x0.037 + 18x0.204)/100 OR (16x0.99759 + 17x0.00037 + 18x0.00204) =16.00445	ct (1)		(2)
	=16.004 Ignore units	(1)	16.005	

Question Number	Acceptable Answers	Reject	Mark
18(c)	Isotopic composition of oxygen in air varies	Air contains other gases	(1)
	ALLOW The abundance of the isotopes of oxygen varies	Air contains many isotopes	
	OR Oxygen standard was introduced before existence of oxygen isotopes was known	Oxygen has many isotopes	
	OR Some scientists used a standard based on one isotope while others used a value based on mixture in natural abundance		
	OR The answer is inaccurate unless a specified isotope is used	Just `12C standard	
	OR 12C standard used because there are many 12C compounds which can be used to calibrate the mass spectrometer ALLOW It was difficult to obtain pure oxygen from air.	is better' 12C standard gives a whole number	

18(d) No difference as both isotopes have the same number of protons (and electrons)/ the same nuclear charge (1) IGNORE IGNORE Same electronic configuration OR OR No difference as only number of neutrons is different	Question Number	Acceptable Answers	Reject	Mark
	18(d)	the same number of protons (and electrons)/ the same nuclear charge IGNORE Same electronic configuration OR No difference as only number of		(1)

(Total for Question 18 = 9 marks)

Number	
NumberMg(g) \rightarrow Mg ⁺ (g) + e ⁽⁻⁾ Formation of Mg ²⁺ 19(a)Mg(g) \rightarrow Mg ⁺ (g) + e ⁽⁻⁾ Formation of Mg ²⁺ ALLOW Mg(g) $-$ e ⁽⁻⁾ \rightarrow Mg ⁺ (g)Loss of electron to form Mg ⁺ (1)IGNORE (g) sign on electronIGNORE (g) sign on electronState symbols ALLOW Provided the equation involves magnesium, even if electron is added to the wrong side.(1)	f (2)

Question Number	Acceptable Answers	Reject	Mark
19(b)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ¹ ALLOW Capital s and/or p, subscripts $2p_x^2 2p_y^2 2p_z^2 3p_x^1$ $3p_y^1 / 3p_z^1$ for $3p_x^1$		(1)

Question Number	Acceptable Answers	Reject	Mark
*19(c)(i)	MP1 Mg to AI: Electron removed from AI is from a higher energy level (3p rather than 3s) ALLOW Electron removed in AI is (more) shielded (by 3s) IGNORE Outer electron is further from nucleus Full sub-shell is more stable than part filled sub-shell (1) MP2 AI to Si: Si has one more proton than AI/ has greater nuclear charge, and electrons removed in both cases are 3p / same sub-shell / are equally shielded (1) MP3 EITHER The attraction of the extra proton in AI is less than the effect of the higher energy level/ the shielding OR Electron removed from Si is closer to nucleus (than AI) ALLOW Silicon is smaller in size (1)		(3)

Question Number	Acceptable Answers	Reject	Mark
19(c) (ii)	MP1 S does not follow trend (P is above Si followed by dip in graph from P to S rising again to Cl and Ar) (1)		(3)
	MP2 S has one (3)p orbital which has two electrons/ paired electrons/ is fully occupied OR S has $3p_x^2$, $3p_y^1$, $3p_z^1$ OR Electron in box diagram for S ALLOW S has a pair of electrons in the (3)p subshell (1)	Just "S has 3p ⁴ " d orbital	
	MP3 A paired electron is easier to remove OR paired electrons repel each other ALLOW half filled sub-shell (in P) is stable (1)	P has a half filled orbital	

Question Number	Acceptable Answers	Reject	Mark
19(d)	Four x round Si sharing one • with each Cl (1) Seven • round each Cl sharing one x with each Si (1)		(2)
	: CL:		
	: CL: Si * CL:		
	ALLOW		
	Reversed symbols		

Question Number	Acceptable Answers	Reject	Mark
Number *19(e)(i)	<pre>MP1 I[−] / anion becomes distorted / not spherical. May be shown in a diagram (1) MP2 Mg²⁺ has high(er) charge and small(er) radius/ Mg²⁺ has high charge density (1) MP3 Bonding in magnesium iodide has some covalent character OR Orbitals of Mg²⁺ and I⁻ overlap/ Mg²⁺ shares some of the I[−] electrons OR Mg²⁺ and I⁻ ions are not completely separate (1)</pre>	Iodine becomes distorted Just "electrons in outer shell are attracted" Atoms of Mg have a small (atomic) radius	(3)

Question Number	Acceptable Answers	Reject	Mark
19(e)(ii)	Experimental/ Born Haber cycle and theoretical/ calculated lattice energies are different OR Experimental/ Born Haber cycle lattice energy is more exothermic/ more negative than theoretical/ calculated lattice energy	Just "Compare Experimental/ Born Haber cycle and theoretical/ calculated lattice energies"	(1)
	ALLOW Greater for more negative IGNORE Comments about melting temperature	Use of electron density map	

(Total for Question 19 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
20(a)(i)	(Different) boiling temperatures/ boiling points ALLOW		(1)
	Range of boiling temperatures		

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	Cracking: breaking of carbon chain (in a hydrocarbon/ alkane) to give shorter chain hydrocarbon(s)/ smaller molecules	Just "Breaking a hydrocarbon" Just "Breaking a molecule"	(2)
	OR breaking a hydrocarbon/ alkane to give smaller molecules	Breaking a hydrocarbon to form branched chains or ring	
	OR Breaking an alkane to give an alkene and (a smaller) alkane/ hydrogen (1)	structures	
	Reforming: converting straight chain to a (more) branched chain/ ring/ arene / aromatic compound		
	ALLOW Specific examples (1)		
	IGNORE Makes more useful compounds Converting low octane (fuels) into high octane (fuels)		

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	Look at final answer: +71 (kJ mol ⁻¹) scores 3 marks -71/ 71 (kJ mol ⁻¹) scores 2 marks -5825 (kJ mol ⁻¹) scores 1 mark		(3)
	Method: $C_4H_{10} \rightarrow C_3H_6 + CH_4$ $(+13/2 O_2)$ (+13/2 O ₂) -2877 -2058-890 /-2948		
	-2877 -2058-890 /-2948 4CO ₂ + 5H ₂ O		
	MP1 Labelled cycle OR use of $\Delta H = \Sigma \Delta H_{\text{combustion}}$ reactants - $\Sigma \Delta H_{\text{combustion}}$ products (1)		
	$MP2 \\ \Delta H = (-2877 - (-2058 + (-890))) $ (1)		
	MP3 = +71 (kJ mol-1) (1)	Incorrect units	

Question Number	Acceptable Answers	Reject	Mark
20(a)(iv)	$\begin{array}{l} C_4H_{10} \rightarrow C_2H_6 \ + \ C_2H_4 \\ OR \\ C_4H_{10} \rightarrow C_4H_8 \ + \ H_2 \\ OR \\ C_4H_{10} \rightarrow 2C_2H_4 \ + \ H_2 \\ \end{array}$ ALLOW Breakdown of multiple butanes	$C_4H_{10} \rightarrow C_3H_6 + CH_4$ Charged products eg $C_2H_5^+$ Free radicals eg $C_2H_5^{\bullet}$	(1)
	Ignore state symbols, even if incorrect	62115	

Question Number	Acceptable Answers	Reject	Mark
20b(i)	Look at final answer: -2050 (kJ mol ⁻¹) or anything correctly rounded from -2046.528 (-2047, -2046.5, -2046.53) scores 3 marks		(3)
	+2050/ 2050 (kJ mol ⁻¹) scores 2 marks		
	Incorrect rounding scores 2 marks		
	Correct value without sign scores 2 marks		
	Energy transferred = $(200 \times 4.18 \times 34.0)$ =28424 (J) IGNORE Sign if given (1)		
	Mol pentane = $(1.0/72) = 0.01389 / 0.0139$ (1)		
	$\Delta H = - (-28424 \div (1/72 \times 1000))$		
	= -2046.528 (kJ mol ⁻¹)		
	ALLOW TE from MP 1 and 2 provided moles of pentane is not taken as 1 (1)		
	NOTE Use of 0.0139 mol gives -2044.9 (kJ mol ⁻¹) giving 3 marks Use of 0.0138 mol gives -2059.7 (kJ mol ⁻¹) giving 2 marks Use of 0.014 mol gives -2030.29 (kJ mol ⁻¹) giving 2 marks		
	Ignore SF except one or two		

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	Incomplete combustion OR Loss of pentane by evaporation ALLOW Volume of water too large to heat evenly Water not stirred evenly Small change in mass inaccurate Heat capacity of /energy needed to heat calorimeter not included	Incomplete reaction Loss of water by evaporation Heat losses Conditions not standard Measuring errors Pentane impure	(1)

Question Number	Acceptable Answers	Reject	Mark
20(b)(iii)	Pentane is very volatile/ has low boiling temperature so risk of explosion		(1)
	OR Has high flammability	Just "it is flammable"	
	IGNORE Reaction is very exothermic	Vapour is toxic Combustion products/ CO toxic	

Question Number	Acceptable Answers	Reject	Mark
20(c)(i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ Allow multiples Ignore state symbols even if incorrect		(1)

Question Number	Acceptable Answers		Reject	Mark
20(c) (ii)	Bonds broken are four C-C twelve C-H eight O=O Bonds made are ten C=O twelve O-H ALLOW TE from (c)(i) If all five bonds are named but formulae not given eg oxygen- oxygen bonds, max 1 If all five bonds are correctly identified by formula but numbe are incorrect or missing, max 1	(1) (1)	O-O single bonds C-O single bonds	(2)
	identified by formula but numbe	ers		

Question Number	Acceptable Answers	Reject	Mark
20(c)(iii)	The (total) bond energy of the bonds formed is greater than the bond energy of the bonds broken OR	Just"more bonds are made than broken"	(1)
	Energy released forming new bonds > energy needed to break old bonds OR	Answers referring to energy needed to make bonds	
	The sum of the bond energies of the products is greater than the sum of the bond energies of the reactants.	Energy contained by bonds in reactants> energy contained by bonds in products	

(Total for question 20 = 16 marks)

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	Species/ atom/ molecule/ particle with an unpaired electron	Just "with a single electron"	(1)
	ALLOW An element with an unpaired electron	A lone electron	
	IGNORE Reference to neutral species /lack of charge	Charged particle with an unpaired electron	

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	Half arrows going from bond to Cl or just beyond and product 2Cl• / Cl• + Cl•	Cl without •	(1)

Question Number	Acceptable Answers		Reject	Mark
21a(iii)	$\begin{array}{l} C_2H_6+Cl\bullet \rightarrow C_2H_5\bullet + HCl\\ ALLOW\\ Structural formulae e.g. CH_3CH_3\\ OR displayed\\ IGNORE\\ Production of C_2H_5Cl from \ C_2H_5\bullet\\ first step is correct \end{array}$	if (1)	C ₂ H ₅ +	(2)
	Propagation The second mark is independent the first	(1) of		

Question Number	Acceptable Answers	Reject	Mark
21a(iv)	$\begin{array}{l} C_2H_5 \bullet + C_2H_5 \bullet \rightarrow C_4H_{10} \\ \\ \mbox{ALLOW} \\ \mbox{Structural formulae e.g. CH}_3CH_2 \bullet \\ / \bullet \ CH_3CH_2 \\ \\ \mbox{OR displayed} \\ \\ \\ \mbox{IGNORE} \\ \\ \mbox{Cl} \bullet + \ Cl \bullet \rightarrow \ Cl_2 \end{array}$	Methyl or propyl radicals	(1)

Question Number	Acceptable Answers	Reject	Mark
21b(i)	σ bond between C atoms shown as 2 overlapping orbitals/ one electron cloud/ single bond (1) π bond above and below $σ$ bond shown as two electron clouds/ overlapping p orbitals/ p orbitals linked by a line / a curved line above and below single bond (1) Both bonds must be labelled for 2 marks.		(2)

Question Number	Acceptable Answers	Reject	Mark
*21b(ii)	MP1 $σ$ bond remains ALLOW The product contains $σ$ bonds only 		(3)

Question Number	Acceptable Answers		Reject	Mark
21(b)(iii)	From: Purple/ pink (solution) To: colourless	(1)	To brown	(2)
	н н - н—о—с—с—о—н н н	(1)	Molecular/ structural/ skeletal formulae	
	Any orientation Don't penalise undisplayed OH Don't penalise bonds going to middle of undisplayed OH		C bonded to H of OH	

Question Number	Acceptable Answers	Reject	Mark
21(b)(iv)	Second mark depends on use of bromine/ solution of bromine for test.		(2)
	EITHER Test: add bromine water / Br ₂ (aq) ALLOW Add bromine in organic solvent/ bromine dissolved in hexane/ bromine in 1,1,1-trichloroethane (1)		
	From: brown/ red-brown/orange/ yellow To: colourless (1)		
	OR Add bromine / Br ₂ (1)		
	From: brown/ red-brown To: colourless (1)		

Question Number	Acceptable Answers	Reject	Mark
21(b)(v)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & \\$		(4)

Question Number	Acceptable Answers	Reject	Mark
21(c)	$/// + H_2 \rightarrow ///$	Use of H, H ⁺	(2)
	(1)		
	Suitable catalyst nickel/ platinum/ palladium (1)	Zeolite catalyst	
	Ignore references to temperature, pressure, uv light		

(Total for Question 21 = 20 marks)

TOTAL FOR PAPER = 80 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL