

A-LEVEL **Physics**

PHA5/2C – Applied Physics Mark scheme

2450 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Question	Answers	Additional Comments/Guidance	Mark	ID details
1 (a)	✓ against 'thin ring'		1	
1 (b) (i)	(as core radius decreases M of I of core decreases) I ω /angular momentum must remain constant \checkmark I decreases so ω increases and greater ω means shorter period of rotation or less time for one revolution \checkmark		2	
1 (b) (ii)	$\begin{array}{l} 0.4 \ mR_1^2 \times 2\pi/T_1 = 0.4 \ mR_2^2 \times 2\pi/T_2 \checkmark \\ T_2/T_1 = R_2^2/R_1^2 \checkmark \\ T_2 = \frac{(14 \times 10^3)^2}{(5.3 \times 10^7)^2} \times 5.9 \times 10^6 \\ = 0.41 \ \text{s} \checkmark \qquad 2 \ \text{sf} \checkmark \\ \textbf{OR} \\ \omega_1 = 2\pi/T = 2\pi/(5.9 \times 10^6) = 1.1 \times 10^{-6} \ \text{rad s}^{-1} \checkmark \\ (1.07 \times 10^{-6}) \ \text{rad s}^{-1} \\ 0.4 \ m \times (5.3 \times 10^7)^2 \times \omega_1 = 0.4 \ m \times (14 \times 10^3)^2 \times \omega_2 \checkmark \\ \text{leading to} \\ \omega_2 = 16 \ \text{rad s}^{-1} \ [15.3 \ \text{if } 1.07 \times 10^{-6} \ \text{used}] \\ T_2 = 2\pi/\omega_2 = 0.39 \ \text{s} \ (2 \ \text{sf throughout}) \checkmark \ 2 \ \text{sf} \checkmark \\ [0.41 \ \text{s} \ \text{if } 1.07 \times 10^{-6} \ \text{rad s}^{-1} \ \text{used}] \end{array}$	$I_1\omega_1 = I_2\omega_2$ not enough for second mark Must see substitution The sf mark is an independent mark and can only be given if final answer is 2 sf.	4	
Total			7	

Question	Answers	Additional Comments/Guidance	Mark	ID details
2 (a) (i)	$\Delta E = \frac{1}{2} I (\omega_1^2 - \omega_2^2) = 0.5 \times 0.041 \times (6700^2 - 3300^2)$ = 700 × 10 ³ J ✓ (697 × 10 ³ J)		1	
2 (a) (ii)	$P = E/t = \frac{700 \times 10^{3}}{7.2} = 97\ 000\ W \checkmark$ OR Use of <i>T</i> = I \alpha and <i>P</i> = <i>T</i> \omega_{ave} giving 97\ 000\ W \checkmark	Give CE for use of 2ai answer provided ½ I ω^2 has been used e.g ½ I ω_{AVE}^2 or ½ I ω_1^2 or ½ I $(\omega_1 - \omega_2)^2$ Accept 97 kW if unit is changed in answer line from W to kW.	1	
2 (a) (iii)	$T = P/\omega_{\text{ave}} = \frac{97 \times 10^3}{5000} = 19 \checkmark \text{Nm} \checkmark$ $\mathbf{OR} \ T = \text{I} \ \alpha = 0.041 \times \frac{(6700 - 3300)}{7.2} = 19 \checkmark \text{Nm} \checkmark$	The unit mark is an independent mark. Award first mark if <i>T</i> has been correctly calculated in 2aii if alternative method used in 2aii.	2	
2 (b)			Max 6	

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.					
0 marks	Level 1 (1–2 marks)	Level 2 (3–4 marks)	Level 3 (5–6 marks)		
The information conveyed by the	The information conveyed by the answer is	The information conveyed in the answer	The information conveyed by the answer is clearly		
answer is sketchy, and neither	poorly organised and may not be relevant	may be less well organized and not fully	organized, logical and coherent, using appropriate		
relevant or coherent.	or coherent. There is little correct use of	coherent. There is less use of specialist	specialist vocabulary correctly. The form and style		
The candidate shows inadequate	specialist vocabulary.	vocabulary or specialist vocabulary may be	of writing is appropriate to answer the question.		
understanding of the concept of	The candidate shows little	used or spelled incorrectly. The form and	All three bullet points will be addressed.		
moment of inertia. Formulae may	understanding of the factors which	style of writing is less appropriate.	Answers will relate E_{K} to the factors that give		
be quoted from the Formulae	affect energy storage in a flywheel.	The candidate may not tackle all of the	high M of I, with sensible suggestions		

г

1

booklet, but the candidate is unable to apply their meaning to the question. They may relate rotational E ₁ to angular speed and/or M of I, but not confidently cover aspects of mass, and distribution of mass around the axis, and may not relate their answers well to the context of the question. bullet points in the question fully, but should have a fairly good idea of the factors that affect energy storage. Candidates are likely to relate E ₁ to angular speed ² and to the way the mass is distributed around the axis. concerning the shape and design. examples of the points made in the response • E _K proportional to ω ² • E _K proportional to I extra information Shape • I depends on mass and distribution of mass around axis. • I = 2mr ² so arrange more m at outer edge of flywheel • By using heavy rim and spokes/thin centre web • Increase thickness to increase m Material • Gives greater mass for given size • use material of higher tensile strength • for higher speeds without bursting/to withstand rotational/centripetal stressees evel 1 fewer than 4 points. Design for high ω Increase w by: • Increase w by:					
 examples of the points made in the response <i>E_k</i> proportional to <i>ω²</i> <i>E_k</i> proportional to <i>i</i> <i>Shape</i> <i>I</i> depends on mass and distribution of mass around axis. <i>I</i> = Σ<i>m²</i> so arrange more <i>m</i> at outer edge of flywheel By using heavy rim and spokes/thin centre web Increase thickness to increase <i>m</i> Material use higher density material Gives greater mass for given size use material of higher tensile strength for higher speeds without bursting/to withstand rotational/centripetal stresses Design for high <i>ω</i> Increase <i>w</i> by: Design for high <i>ω</i> Increase <i>w</i> by: 	booklet, but the candidate is unable to apply their meaning to the question. They may relate rot angular speed and/ confidently cover as distribution of mass and may not relate to the context of the		tational E_{κ} to for M of I, but not spects of mass, and around the axis, their answers well equestion.	bullet points in the question fully, but should have a fairly good idea of the factors that affect energy storage. Candidates are likely to relate E_K to angular speed ² and to the way the mass is distributed around the axis.	concerning the shape and design.
 Reduce inclion at bearings use lubrication or roller bearings/air bearings/magnetic bearings 	examples of the points made in • $E_{\rm K}$ proportional to ω^2 • $E_{\rm K}$ proportional to <i>I</i> Shape • <i>I</i> depends on mass ar mass around axis. • $I = \Sigma mr^2$ so arrange m edge of flywheel • By using heavy rim ar centre web • Increase thickness to <u>Material</u> • use higher density ma • Gives greater mass for • use material of higher • for higher speeds with withstand rotational/or stresses <u>Design for high ω</u> Increase ω by: • Reduce friction at beat • use lubrication or rolled bearings/magnetic beat	n the response nd distribution of nore <i>m</i> at outer nd spokes/thin increase <i>m</i> aterial or given size r tensile strength nout bursting/to entripetal	extra information Also allow sketches v use of 'dep need for p gyroscopic Level 3: 1st 2 poin Level 2: between Level 1 fewer than Quoting formulae	n which convey correct info clearly bends on' for 'proportional to' erfect balance c effects <i>nts plus 6 other points from shape, ma</i> <i>4 and 7 points</i> <i>n 4 points.</i> <i>alone is not enough.</i>	aterial and design for high ω

smooth outer surfaces		
• small increase in ω gives large increase in $E_{\rm K}$ (because ω^2)		
		 1

Total		10

Question	Answers	Additional Comments/Guidance	Mark	ID details
3 (a) (i)	use of $p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$ (gives $p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\gamma}$) $p_2 = (1.0 \times 10^5) \left(\frac{5.8 \times 10^{-6}}{2.3 \times 10^{-7}}\right)^{1.4} \checkmark = 9.2 \times 10^6 \text{Pa} \checkmark$	First mark for correct substitution of data into $p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$ or $p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\gamma}$ Second mark for arriving at correct answer to more than 1 sf.	2	
3 (a) (ii)	Use of $n = \frac{p_1 V_1}{RT_1} \checkmark$ = $\frac{1.0 \times 10^5 \times 5.8 \times 10^{-6}}{8.31 \times 293} = 2.4 \times 10^{-4} \text{ mol} \checkmark (2.38 \times 10^{-4} \text{ mol})$		2	

3 (a) (iii)	$ \begin{array}{l} (\text{use of } \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \text{ or use of n, } p_2 \text{ and } V_2 \text{ in } pV = nRT \text{ gives}) \\ T_2 = \frac{(9.2 \times 10^6) \times (2.3 \times 10^{-7}) \times 293}{(1.0 \times 10^5) \times (5.8 \times 10^{-6})} \checkmark = 1070 \text{ K} \checkmark (1068 \text{ K}) \\ \left[\text{ or } T = \frac{(9.2 \times 10^6) \times (2.3 \times 10^{-7})}{2.4 \times 10^{-4} \times 8.31} \right] \end{array} $	Allow use of 9 × 10 ⁶ for p ₁	2	
-------------	---	---	---	--

Question	Answers	Additional Comments/Guidance	Mark	ID details
3 (b)	$Q = \Delta U + W$ with symbols explained \checkmark (if plunger pushed in slowly), sufficient time for heat transfer to surroundings/tube/metal plug \checkmark (so) any increase in ΔU will be zero or small \checkmark [or $\Delta U = 0$] relates ΔU to temperature increase \checkmark		Max 3	
Total			9]

Question	Answers	Additional Comments/Guidance	Mark	ID details
4 (a) (i)	w.d. = area of loop \checkmark suitable method for finding area e.g. counting squares \checkmark scaling factor calculated leading to $215 \times 10^3 \text{ J} \checkmark$ allow $195 \times 10^3 \text{ J}$ to $232 \times 10^3 \text{ J}$	 1st mark can be awarded if it is clear from Figure 6 that correct area is used, or if working leads to correct answer Allow 15¹/₂ to 18¹/₂ 1 cm squares, or 390 to 465 small squares. e.g. 430 small squares × (0.05 × 10⁵) × 0.1 or 17 1 cm squares × (0.25 × 10⁵) × 0.5 	3	
4 (a) (ii)	$215 \times 10^3 / 5.9 = 36 \times 10^3 \text{ W } \checkmark$	Allow CE for (answer to (a)(i)) ÷ 5.9	1	
4 (b) (i)	output power = <i>mgh/t</i> = (5700 × 9.8 × 2.1)/5.9 = 20 × 10 ³ W ✓		1	
4 (b) (ii)	mechanical efficiency = output power/indicated power = $20/36 = 0.56 (56\%) \checkmark$	Allow CE for [answer (b) (i)] / [answer (a) (ii)] provided answer < 100%	1	
4 (c) (i)	$\eta_{\text{max}} = \frac{T_{\text{H}} - T_{\text{C}}}{T_{\text{H}}}$ $= \frac{375 - 285}{375} = 0.24 \ (24\%) \checkmark$		1	

Question	Answers	Additional Comments/Guidance	Mark	ID details
4 (c) (ii)	 Any 2 from heat loss through cylinder wall or piston to surrounding air cylinder and piston have to be heated from cold every cycle cold cylinder walls will condense some of the input steam leakage of steam or air past piston not all steam may be condensed friction (max 1 mark) – but must say where e.g. piston/cylinder pivot/beam in pump 	Answers must relate to this engine. Do not credit general answers such as 'heat loss to surroundings' or 'friction in moving parts'	Max 2	
Total			9	