

F

Thursday 18 May 2017 – Morning

GCSE TWENTY FIRST CENTURY SCIENCE CHEMISTRY A/SCIENCE A

A171/01 Modules C1 C2 C3 (Foundation Tier)

Candidates answer on the Question Paper. A calculator may be used for this paper.

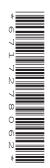
OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour

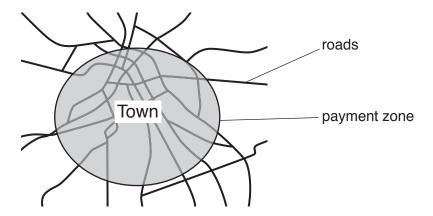

Candidate forename				Candidate surname			
Centre number				Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do **not** write in the barcodes.

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with a pencil ().
- The Periodic Table is printed on the back page.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- This document consists of 20 pages. Any blank pages are indicated.



2 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

	exhaust gases of cars contain pollutants. e of the pollutants is nitrogen monoxide.	
(a)	Put a ring around the correct words in each line to describe how nitrogen monoxid formed in cars.	e is
	Nitrogen monoxide forms when nitrogen from the air / petrol	
	combines with oxygen / carbon dioxide / water from the air	
	at a high / low temperature inside the engine.	[2]
(b)	Cars are fitted with catalytic converters.	
	A reaction in the catalytic converter converts the nitrogen monoxide into a harmless gas.	
	This is the equation for the reaction.	
	2NO + 2CO \rightarrow 2CO ₂ + N ₂	
	Which statement about the reaction is true ?	
	Put a tick (✓) in the box next to the correct answer.	
	Nitrogen monoxide is oxidised to form nitrogen dioxide.	
	Nitrogen monoxide is reduced to form nitrogen dioxide.	
	Nitrogen monoxide is oxidised to form nitrogen.	
	Nitrogen monoxide is reduced to form nitrogen.	[1]
		111

(c) A town council wanted to reduce the amount of air pollutants in a town. The council decided to introduce a payment zone for cars.

(i)	Why did the council think that a payment for cars to enter the town would imp quality in the town?	rove ai
		[2]

(ii) Alex works for the town council.

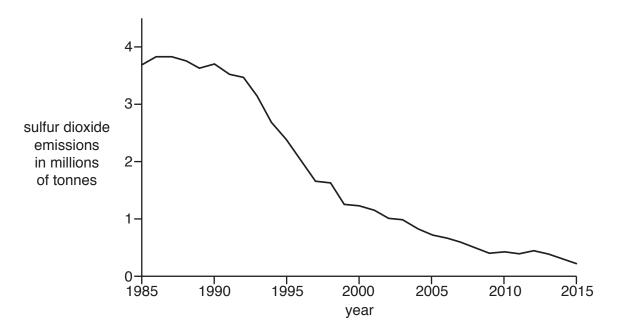
Alex measured the amount of pollutants in the air inside the payment zone and outside the payment zone.

He recorded data every day for a year before the payment was introduced and every day for a year afterwards.

The table shows Alex's data.

Site	Pollutant	Daily mean amount before the payment was introduced in μg/m ³	Daily mean amount after the payment was introduced in µg/m ³	Percentage change in %
Outside the	nitrogen oxides	560	476	-15
payment zone	carbon monoxide	25	22	-12
Inside the	nitrogen oxides	600	480	-20
payment zone	carbon monoxide	30	24	-20

Suzy and Martin talk about the data in the table.


Suzy There is no need to introduce a payment zone. Air pollution is decreasing anyway.	Martin The table shows that the payment is helping to lower air pollution.

Explain how the data in the table supports the ideas of both Suzy and Martin.	
	[3]

[Total: 8]

	and	[2]
	Acid rain is formed when sulfur dioxide reacts with	
	chlorine nitrogen oxygen sulfur water	
	Complete the following sentence which describes how acid rain is formed. Choose from the following words.	
(b)	Sulfur dioxide is damaging to the environment because it causes acid rain.	
	Incomplete combustion of carbon compounds in the fuel.	[1]
	Sulfur dioxide is added to fossil fuels to help them burn.	
	Sulfur reacts with nitrogen in the air.	
	Sulfur in the fuel burns.	
	Put a tick (✓) in the box next to the correct answer.	
(a)	How does the sulfur dioxide form?	
	fur dioxide is an air pollutant which is formed when fossil fuels are burned in power stat I in motor vehicles.	ons

(c) The graph shows the amount of sulfur dioxide put into the air in the UK from 1985 to 2015.

Describe how the sulfur dioxide emissions have changed from 1985 to 2015 and suggest reasons for the change.

The quality of written communication will be assessed in your answer.
ro1
 [6]

[Total: 9]

The amounts of gases in the Earth's atmosphere have changed since the atmosphere first formed.

(a)		mplete the following statements about the atmosphere and how it has changed. oose from the following words.						
		argon	carbon dioxide	nitrogen	oxygen	water		
	(i)	When the Earth's atmosphere first formed, it contained mainly water vapour and						
							[1]	
	(ii)	After plants appeared, photosynthesis produced more						
	(iii)	The Earth's	atmosphere now con	tains approximat	ely:			
		21% oxyger	n					
		78%						
		1%					[2]	

[Total: 4]

3

9

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

4 Crude oil contains hydrocarbons.

The table shows information about some of the hydrocarbons in crude oil.

		Properties				
Hydrocarbon	Number of carbons in one molecule	Melting point in °C	Boiling point in °C	State at 25°C	Density in g/cm ³	
Methane	1	-182	-161	gas	0.42	
Ethane	2	-183	-89		0.55	
Propane	3	-188	-42	gas	0.50	
Butane	4	-135	0	gas	0.58	
Pentane	5	-130	36	liquid	0.63	
Octane	8	- 57	126	liquid	0.70	
Undecane	11	-26	196	liquid	0.74	
Dodecane	12	-10	216		0.75	
Eicosane	20	37	344	solid	0.79	

(a) Predict the states at room temperature for **ethane** and **dodecane**. Write your answers in the table.

[2]

(b)	Larger hydrocarbon molecules contain more carbon atoms.	

Use the information in the table and your own knowledge to describe how the properties change as the molecules increase in size.

The quality of written communication will be assessed in your	
	[6]
	[Total: 8]

- 5 Nanoparticles are very small particles.
 - (a) Which statements about nanoparticles are true and which are false?

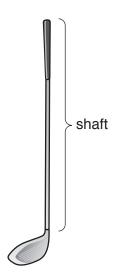
Put a tick (\checkmark) in one box in each row.

	True	False
Nanoparticles can be used to make sports equipment stronger.		
Nanoparticles can occur naturally.		
Nanoparticles have the same properties as larger particles.		
Nanoparticles are about the same size as molecules.		

[2]

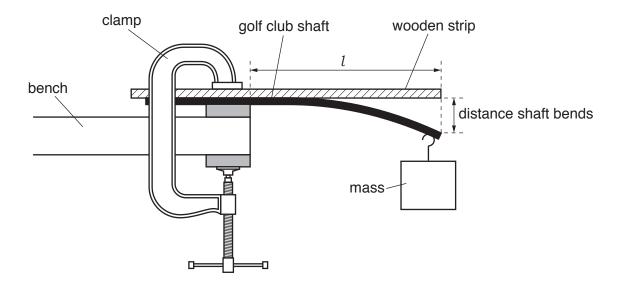
(b) Doctors use stitches to hold together large cuts so that they can heal properly.

Doctor Khalique is considering buying a new type of material to use for stitches.


He needs to choose between a material that contains silver nanoparticles and a material that does not.

(i)	Doctor Khalique thinks that there are advantages of using the material that contains nanoparticles instead of the material that does not.
	Give one advantage of using the material with silver nanoparticles for stitches.
	[1]
(ii)	Doctor Khalique has some concerns about using a material that contains nanoparticles on patients.
	Give one reason against using nanoparticles.
	[1]
(iii)	Doctor Khalique decides to buy the new material with nanoparticles.
	Use the ideas of risk and benefit to justify his decision.

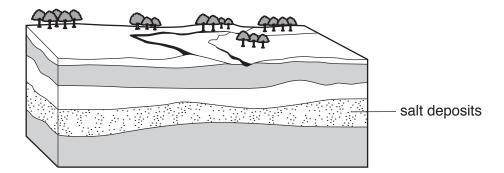
[Total: 5]


6 Chris works for a company that makes golf clubs.

The flexibility of the shaft of the golf club is important.

Golf clubs are given a Flex Rating as a measure of the flexibility of the shaft.

Chris measures the flexibility of a shaft using the following apparatus.


He measures the distance that the shaft bends when the mass is added.

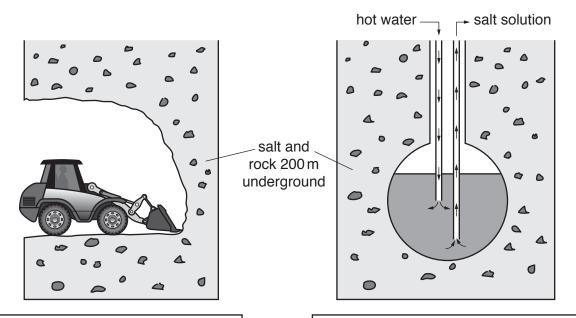
Chris tests several different shafts.

(a)	In each test, Chris controls the length of the shaft. Explain how and why he does this.	

es	se are his resul				
		Distanc	e shaft bends	s in mm	
	Test 1	Test 2	Test 3	Test 4	Test 5
	86	89	87	88	87
	The Flex Ratin	α for the shaft is			ıla
i)		g for the shaft is $\overline{}$	s given by the	following formu	ıla.
	F	g for the shaft is Flex Rating = $\frac{1}{3}$ wants a shaft w	s given by the 100 × distance sha	following formo 200 aft bends in mr	ula. _ n
	F The company v	Flex Rating = $\frac{1}{3}$	s given by the 100 × distance sha hich has a Fle	following formoments 2000 aft bends in mr x Rating of bet	ula. _ n
	F The company v	Flex Rating = $\frac{1}{3}$ wants a shaft w	s given by the 100 × distance sha hich has a Fle	following formoments 2000 aft bends in mr x Rating of bet	ula. _ n
	F The company v	Flex Rating = $\frac{1}{3}$ wants a shaft w	s given by the 100 × distance sha hich has a Fle	following formoments 2000 aft bends in mr x Rating of bet	ula. _ n
	F The company v	Flex Rating = $\frac{1}{3}$ wants a shaft w	s given by the 100 × distance sha hich has a Fle	following formoments 2000 aft bends in mr x Rating of bet	ula. _ n
	F The company v	Flex Rating = $\frac{1}{3}$ wants a shaft w	s given by the 100 × distance sha hich has a Fle	following formoments 2000 aft bends in mr x Rating of bet	ula. _ n
	F The company v	Flex Rating = $\frac{1}{3}$ wants a shaft w	s given by the 100 × distance sha hich has a Fle his shaft is suit	following formonds 2000 Aft bends in mr x Rating of bet able.	ula. _ n

7 There are large underground salt deposits between layers of rocks in the north west of England.

(i) Which two pieces of evidence show that the rocks were formed under the sea?


(a) Geologists have looked at the rocks in some of the layers.

They found evidence that the rocks were formed under the sea.

	Put a tick (✓) in the boxes next to the co	orrect answers.
	The rock is black.	
	The rock has ripples on its surface.	
	The rock contains fossils of trees.	
	The rock contains pieces of shell.	
	The rock is hard.	
(ii)	The rocks were formed in a hot climate.	[2]
	Explain how rocks formed in a hot climate.	ate are found in the north west of England which
		[4]

(b) A company wants to extract the salt from underground and use it for making chemicals. Salt used for making chemicals needs to have a high purity.

The salt deposits are 200 m underground. Salt can be extracted by two methods.

Method 1 Salt mixed with rocks is dug out from underground and brought up to the surface.

Method 2 Water is heated and pumped into the salt and rock. Salt dissolves and salt solution is pumped back to the surface.

Compare the advantages and disadvantages of each method and explain which would be the best method to extract salt for making chemicals.

The quality of written communication will be assessed in your answer.	
 	[6]
	[Total: 9]

- **8** Before the 19th century, people made alkalis from natural raw materials.
 - (a) These statements are about making and using alkalis before the 19th century.

Which statements are true and which are false?

Put a tick (\checkmark) in one box in each row.

Statement	True	False
Alkalis were made from burnt wood and urine.		
Alkalis were made from acids.		
Alkalis were used to make soaps and dyes.		
Alkalis were used as food flavourings.		

(b) In the 19th century a large scale method for making alkalis was developed. The new method produced large amounts of a toxic gas.

In 1874, Henry Deacon invented a new reaction which used up the toxic gas.

This is the equation for the reaction.

hydrogen chloride + oxygen → water + chlorine

Henry Deacon had this to say about his new reaction.

My reaction converts a toxic gas into one harmless chemical and one other chemical that can be used to stop the spread of diseases.

Is what Deacon says correct?	
Use the equation to explain your answer.	
	[3]

© OCR 2017 [Total: 5]

[2]

. [0]

9 PVC is a polymer used to make clothing.

(a) PVC contains carbon and hydrogen.

Place a (ring) around the other element present in PVC.

	oxygen	nitrogen	chlorine	copper	phosphorus	[1]
(b)	Plasticisers are adde	ed to the PVC po	olymer to make i	t more suitabl	e for clothing.	
	How does adding a p	olasticiser chanç	ge the properties	of a polymer	?	
	Put a tick (✓) in the b	oox next to the c	correct answer.			
	The plasticiser make	es the polymer s	tronger.			
	The plasticiser make	es the polymer s	tiffer.			
	The plasticiser make	s the polymer m	nore flexible.			
	The plasticiser remo	ves the colour fr	om the polymer.			[1]
(c)	Over time, plasticise	rs leach out slov	vly from the poly	mer.		
	Explain why this ca bottles.	uses problems	if a polymer wit	h plasticisers	is used for making	y water
						[2]

END OF QUESTION PAPER

[Total: 4]

The Periodic Table of the Elements

1	2			Key			1 H hydrogen 1					3	4	5	6	7	0 4 He helium 2
7 Li lithium 3	9 Be beryllium 4		ato	ve atomic omic syml name (proton) I	ool							11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12											27 Al aluminium 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 C <i>l</i> chlorine 17	40 Ar argon 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26	59 Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	65 Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	80 Br bromine 35	84 Kr krypton 36
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh rhodium 45	106 Pd palladium 46	108 Ag silver 47	112 Cd cadmium 48	115 In indium 49	119 Sn tin 50	122 Sb antimony 51	128 Te tellurium 52	127 I iodine 53	131 Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhenium 75	190 Os osmium 76	192 Ir iridium 77	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 T <i>I</i> thallium 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111	Eleme	nts with ato		s 112-116 ha authenticate	ve been repo	orted but no	t fully

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.