Write your name here						
Surname		Other name	S			
Pearson Edexcel Centre Number Candidate Number International GCSE Candidate Number						
Chemistry Unit: 4CH0 Paper: 2CR						
Wednesday 15 June 2016 – AfternoonPaper ReferenceTime: 1 hour4CH0/2CR						

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

	0	Helium 22222222	20 Neon 10 40 Argon 18	84 Krypton 36	131 Xenon 54	222 Radon 86			
	4		19 Fluorine 9 Chlorine 17	80 Bromine 35	127 lodine 53	210 At Astatine 85			
	ပ		16 Oxygen 8 Sultur 16	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84			
	ъ		Nitrogen 31 7 7 7 7 7 7 7 7 7 5	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83			
	4		Carbon 6 Carbon 6 Silicon 14	73 Ge Germanium 32	11 50 50 11 11 10	207 Pb Lead 82			
	ო		11 Boron 5 Aluminium 13						
щ				65 Zinc 30	112 Cadmium 48	201 Hg Mercury B0			
C TABL				63.5 Copper 29	108 Ag Silver	197 AU Gold 79			
THE PERIODIC TABLE				28 Nickel Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78			
HE PE				59 Cobalt 27	-	192 Ir 17 77			
F				26 T. 56	2	190 Osmium 76			on ic ber
	Group	Hydrogen		55 Mr Manganese 25	96 99 Mo Molybdenum Technetium F 42 43	186 Reenium 75		Key	Relative atomic mass Symbol Name Atomic number
				52 Chromium 24	96 Molybdenum 42	184 W 74			
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73			
				48 Titanium 22	91 Zrconium 40	179 Hafnium 72			
				45 Scandium 21	89 Xttrium 39	139 La Lanthanum 57 227	Actinium 89		
	N		9 Beryllium 4 24 Mg Magnesium 12	40 Cakium 20	L	137 Banum 56 226	Radium 88 89		
			Lithium 3 23 Sodium 11	39 K Potassium 19	86 Rubidium 37	133 CS Caesium 55 223	Francium 87		
	Dariot	-	N N	4	2		~		

2

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions.

1 Hydrated copper(II) sulfate is a soluble blue solid. A large crystal of this solid is placed at the bottom of a beaker of water.

The diagram shows the beaker immediately after placing the crystal in it, and after two days.

after placing the crystal

after two days

(a) After two days, the crystal becomes smaller and the liquid near the bottom of the beaker becomes blue.

Which statement explains these observations?

- A the crystal dissolves
- **B** the crystal freezes
- C the crystal melts
- **D** the crystal sublimes
- (b) After two weeks, the crystal has disappeared.

Which statement best describes the appearance of the liquid in the beaker after two weeks?

- A it is all blueB it is all brown
- C only the lower part is blue
- **D** only the upper part is blue
- (c) The formula of the compound in the crystal is CuSO₄.5H₂O
 - (i) How many different elements are shown in the formula?
 - (ii) How many atoms are shown in the formula?

(1)

(1)

(1)

(Total for Question 1 = 4 marks)

	on is a metal with						
(a)		i many uses. One p	problem with usi	ng iron is that it rusts.			
(a) Name two substances needed for iron to rust.							
(b)) State the name	e of the main comp	ound present in	rust.	(1)		
(c)) The table show	vs three methods us	sed to protect ire	on from rusting.			
		of the objects from see an object only or		lete the table.			
					(3)		
		bicycle chain car engine	bucket food can	car body railway bridge			
				laintay shage			
	Method		Exam	ple of use			
	galvanising						
	oiling						
	painting						

(d) An iron object is coated with zinc to protect it from rusting. This protection continues even if the zinc coating becomes scratched.
 Explain how the zinc coating protects iron from rusting.

(Total for Question 2 = 8 marks)

3	Thi	s qı	uestion is about some gases present in air.	
	(a)	Wł	nich is the most common gas in dry air?	(1)
	\mathbf{X}	Α	argon	(=)
	\mathbf{X}	B	carbon dioxide	
	\mathbf{X}	C	nitrogen	
	\times	D	oxygen	
	(b)	Wł	nich gas makes up about 1 % of dry air?	(1)
	\times	A	argon	
	×	B	carbon dioxide	
	\times	С	nitrogen	
	\mathbf{X}	D	oxygen	
	(c)	Αp	piece of copper is heated in air.	
		Sta	te the formula and colour of the compound formed.	(2)
				(2)

DO NOT WRITE IN THIS AREA

(d) The diagram shows apparatus that can be used to prepare carbon dioxide in the laboratory.

- (i) The liquid in the tap funnel is
- A calcium chloride solution
- B concentrated sulfuric acid
- C dilute hydrochloric acid
- D hydrogen peroxide solution
- (ii) The solid in the conical flask is
- A calcium carbonate
- B calcium sulfate
- C copper(II) oxide
- D manganese(IV) oxide
- (iii) The diagram shows the gas being collected over water.

Suggest another way to collect the gas.

(1)

(1)

(1)

(e) Limewater can be used in a test for carbon dioxide.	
(i) Complete this equation, by inserting state symbols, for the reatest for carbon dioxide.	action used to
	(1)
$CO_2() + Ca(OH)_2() \rightarrow CaCO_3() - CaCO_3()$	+ H ₂ O()
(ii) State the observation made in this test.	
	(1)
(Total for Qu	estion 3 = 9 marks)

P 4 5 9 4 4 A 0 1 0 2 0

(c) Describe a test to show that the gas collected is hydrogen.	(1)
(Total for Quest	tion 4 = 6 marks)

DO NOT WRITE IN THIS AREA

- **5** Potassium and lithium are Group 1 metals that exist as isotopes.
 - (a) (i) Complete the table of information about two isotopes of potassium.

(3)

	Atomic number	Mass number	Number of protons	Number of neutrons	
	19	39	protons	neutions	
			19	22	
(ii) A sample	e of lithium has			/ mass.	
	information to c ir answer to one	alculate the rela	⁷ Li = 92.6% ative atomic ma	ss of lithium.	(2)
(b) A reaction of State two ob	ccurs when a sm pservations that		assium is addec		
(c) A few drops of the reaction	of phenolphtha on. A colour cha		to the liquid in t	he trough at the	e end
(i) State the	e final colour of t	the liquid in the	trough.		(1)
(ii) Give the	formula of the i	on formed durii	ng the reaction	that causes this	colour chang (1)
12					

P 4 5 9 4 4 A 0 1 2 2 0

(d) The electronic configurations of lithium and potassium are Li 2,1 Κ 2,8,8,1 Explain why potassium is more reactive than lithium. (2) (Total for Question 5 = 11 marks)

6	Lithium hydroxide (LiOH) and lithium peroxide (Li ₂ O ₂) have been used in spacecraft to remove the carbon dioxide astronauts breathe out.	
	The equations for the reactions with carbon dioxide are	DO
	$2\text{LiOH} + \text{CO}_2 \rightarrow \text{Li}_2\text{CO}_3 + \text{H}_2\text{O}$	TON
	$2Li_2O_2 + 2CO_2 \rightarrow 2Li_2CO_3 + O_2$	WRIT
	 (a) Explain, with reference to these equations, two advantages of using lithium peroxide, rather than lithium hydroxide, to remove carbon dioxide from the air in a spacecraft. (2) 	DO NOT WRITE IN THIS AREA
		DO NO
		DO NOT WRITE IN THIS AREA
		IN THIS
		AREA
		DO NO
		TWRITE
		DO NOT WRITE IN THIS AREA
		AREA
	$\begin{array}{c} 14 \\ \underbrace{14}_{\mathbf{P}} \underbrace{14}_{4} \underbrace{5}_{9} \underbrace{9}_{4} \underbrace{4}_{4} \underbrace{\mathbf{A}}_{0} \underbrace{0}_{1} \underbrace{14}_{4} \underbrace{14}_{2} \underbrace{14}_{0} \underbrace{14}_{1} \underbrace{14}_{2} \underbrace{14}_{0} \underbrace{14}_{1} \underbrace{14}_{2} \underbrace{14}_{0} \underbrace{14}_{1} $	• *****

(b) (i) Calculate the mass of lithium hydroxide needed to react with 100 g of carbor	n dioxide.
$[M_r \text{ of LiOH} = 24]$	(3)
mass of lithium hydroxide =	g
(ii) Calculate the volume of carbon dioxide, at room temperature and pressure, removed by 100 g of lithium peroxide.	
$[M_{\rm r} {\rm of} {\rm Li}_2 {\rm O}_2 = 46]$	
Assume that one mole of gas has a volume of 24 000 cm ³ at rtp.	(3)
volume of carbon dioxide =	cm ³
(Total for Question $6 = 8 \text{ m}$	
	15

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7	Thi	is q	uestion i	s about the laboratory preparation of salts.	
	(a)	A	student v	writes this plan for preparing a sample of hydrated magnesium sulfate c	rystals.
			step 1	Pour about 100 cm ³ of dilute nitric acid into a 250 cm ³ beaker.	
			step 2	Add a solution of magnesium carbonate to the acid until there is no more effervescence.	
			step 3	Heat the solution until all of the water has boiled off.	
		Th	is plan w	vill not succeed because there is one mistake in each step.	
		Ide	entify the	e mistake in each of the steps.	
					(3)
ste	ep 1.				
ste	ep 2.				
ste	ep 3.				
	-1 ·				
	(b)	hy	drogenp	udent uses the following plan to prepare a sample of ammonium hosphate, formed in this reaction between aqueous ammonia and sphoric acid	
				$2NH_3(aq) + H_3PO_4(aq) \rightarrow (NH_4)_2HPO_4(aq)$	
		•	use a p	ipette to transfer 25.0 cm ³ of phosphoric acid to a conical flask	
		•	add 3 d	lrops of indicator	
		•	use a b permar	urette to add aqueous ammonia until the indicator just changes colour nently	

(i) The diagram shows the burette readings in one experiment before and after adding aqueous ammonia.

Use the readings to complete the table, entering all values to the nearest 0.05 cm³. (3)

burette reading in cm ³ after adding aqueous ammonia	
burette reading in cm ³ before adding aqueous ammonia	
volume in cm ³ of aqueous ammonia added	

(ii) In another titration, the student made a mistake. After he filled the burette, he noticed that the space between the tap of the burette and the tip contained air. After adding the aqueous ammonia, he noticed that it now contained liquid.

Explain how, if at all, this mistake affects the calculated volume of aqueous ammonia added.

5944A01

(2)

The table shows the results.

burette reading in cm ³ after adding ammonia	27.95	28.05	28.00	26.75
burette reading in cm ³ before adding ammonia	0.80	1.60	1.20	0.50
volume in cm ³ of aqueous ammonia added	27.15	26.45	26.80	26.25
concordant results (✓)				

Concordant results are those volumes that differ from each other by 0.20 cm³ or less.

- (i) Identify the concordant results by placing ticks (\checkmark) in the table where appropriate.
- (ii) Use the concordant results to calculate the average (mean) volume of aqueous ammonia added.

(2)

(1)

average volume of aqueous ammonia = cm³

(d) The student then mixed the volumes of aqueous ammonia and phosphoric acic found in the titration.	I
Describe how to use the method of crystallisation to obtain a pure dry sample of the salt from this mixture.	
	(3)
(Total for Question 7 = 14 r	marks)
TOTAL FOR PAPER = 60 M	IARKS

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

