

GCE AS and A Level

Physics B: Physics In Context

AS exams 2009 onwards A2 exams 2010 onwards

Unit 4: Approved specimen mark scheme

Version 1.2

General Certificate of Education

Physics 2456

Specification B: Physics In Context

PHYB4 Physics Inside and Out

Mark Scheme

Specimen Draft

The specimen assessment materials are provided to give centres a reasonable idea of the general shape and character of theplanned question papers and mark schemes in advance of the first operational exams.

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question 1				
(a)	(i)	equates centripetal acceleration with g and substitutes correctly \checkmark	AO1	
		recognises that $T = 2\pi/\omega$	AO1	
		23.9 h ✓	AO2	C
	(ii)	geostationary explained \checkmark	AO2	6
		satellite above equator \checkmark	AO2	
		example of use of geostationary satellite e.g. communication \checkmark	AO1	
(b)		uses rocket equation \checkmark	AO1	
		ratio = $(e^{2.3/95}) = 1.02 \checkmark$	AO2	4
		$m_0 = 1844 \text{ kg} \checkmark$	AO2	4
		44.1 kg (unit not required) ✓	AO2	
(c)	(i)	Speed of spacecraft in stationary orbit $(3050 \text{ m s}^{-1})\checkmark$	AO1	
		Change of speed of the dust particle is $58 + 3 = 61 \text{ km s}^{-1} \checkmark$	AO2	
		$F = 1.2 \times 10^{-4} \times 61000/ 1.4 \times 10^{-3} \checkmark$	AO2	ſ
		5200 N ✓	AO1	0
	(ii)	orbital radius decreases 🗸	AO2	
		speeds up ✓	AO2	

PHYB4: Physics Inside and Out

(d)	The marking scheme for this part of the question includes an or assessment for the Quality of Written Communication (QWC). no discrete marks for the assessment of QWC but the candidate this answer will be one of the criteria used to assign a level and	verall There are es' QWC in award the	
	marks for this part of the question.		
Level	Descriptor an answer will be expected to meet most of the criteria in the level descriptor		Mark range
Good 3	 claims supported by an appropriate range of evidence good use of information or ideas about physics, going beyond those given in the question argument well structured with minimal repetition or irrelevant points accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling 		5-6
Modest 2	 claims partially supported by evidence good use of information or ideas about physics given in the question but limited beyond this the argument shows some attempt at structure the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling 		3-4
Limited 1	 valid points but not clearly linked to an argument structure limited use of information or ideas about physics unstructured errors in spelling, punctuation and grammar or lack of fluency 		1-2
0	- incorrect, inappropriate or no response		0
	ideal answer should show following: one pro argument advanced or elucidated second pro argument one anti argument second anti argument come to clear well argued position	AO3 AO3 AO3 AO3 AO3	
		Total	22

Question 2			
(a)	<i>T</i> torque acting on object \checkmark	AO1	2
	α angular acceleration \checkmark	AO1	2
(b) (i)	$\omega^2 r = 50 \checkmark$	AO2	
	3.2 rad /s ✓	AO2	
(ii)	Use of correct angular motion formula $\omega = \omega_0 + \alpha t \text{ or}$	AO2	
	$v = u + at$ used or alt \checkmark		
	3.2 = 0 + 0.6t or $16 = 0 + 3t$	AO2	0
	$t = 5.3 \text{ s} \checkmark$	AO2	9
(iii)	$T = I\alpha$ seen \checkmark	AO1	
	$4.3 \times 10^5 \times 0.6 \checkmark$	AO2	
	$2.6 \times 10^5 \checkmark$	AO2	
	N m ✓	AO1	
(c)	danger from flying objects ✓	AO3	
	need to strap passengers in \checkmark	AO3	4
	more thrill if unenclosed \checkmark	AO3	4
	wind chill an issue 🗸	AO3	
		Total	15

Question 3			
(a)	technique one 🗸	AO3	
	information derived from it \checkmark	AO3	4
	technique two 🗸	AO3	4
	information derived from it \checkmark	AO3	
(b) (i)	gravitational attraction to ✓	AO1	
	centre of gravity (mass) of mountain 🗸	AO1	3
(ii)	cancellation of some systematic errors \checkmark	AO3	
(c) (i)	calculates volume of cone \checkmark	AO2	
	mass = density \times volume seen \checkmark	AO1	
	$2.2 \times 10^{12} \text{ kg} \checkmark$	AO2	
(ii)	sideways force/mg = tan (0.0011) \checkmark	AO2	
	sideways force = $Gm_{sch} 0.5/(1400)^2$ subst seen \checkmark	AO2	7
	$2.4 \times 10^{24} \text{ kg} \checkmark$	AO2	
(iii)	his density estimate was too low ✓		
	or mean density of the Earth is higher than that of the mountain \checkmark	AO3	
		Total	14

Question 4				
(a)		explains precession 🗸	AO1	
		describes alignment of fields \checkmark	AO1	
		perturbation of protons by gradient magnets \checkmark	AO1	5
		signal as protons return to original state detected \checkmark	AO1	
		computation (FT) required to produce image \checkmark	AO1	
(b)	(i)	use of <i>NBA</i> seen and \checkmark	AO1	
		attempts to calculate $A(\pi r^2)$ \checkmark	AO2	4
		calculates <i>BA</i> 80 µWb ✓	AO2	4
	(ii)	Wb or equivalent 🗸	AO1	
(c)	(i)	use of $E = d\Phi/dt \checkmark$	AO1	
		0.80 mV ✓	AO2	
	(ii)	max 4:		
		halve field 🗸	AO2	
		because this halves flux \checkmark	AO2	6
		halve rate of rotation \checkmark	AO2	
		because the change will take twice as long \checkmark	AO2	
		change angle to field ✓	AO2	
		angle changed by 30° \checkmark	AO2	
			Total	15

Question 5				
(a)	(i)	0.032 nm ✓	AO2	
		$f = c/\lambda$ used with correct subst \checkmark	AO1	
		$9.4 \times 10^{18} \mathrm{Hz}$ ✓	AO2	6
	(ii)	equates $\frac{1}{2}$ mv ² with eV \checkmark	AO1	6
		$1.2 \times 10^8 \text{ m s}^{-1} \checkmark$	AO2	
		assumes electron mass constant with speed \checkmark	AO2	
(b)		high energy electron removes electron from 'close' to nucleus \checkmark	AO2	
		electron from higher orbital drops to fill gap \checkmark	AO2	3
		photon of high energy emitted as this electron loses energy \checkmark	AO2	
(c)	(i)	electrons would lose energy to air molecules \checkmark	AO2	
		and be captured by ions \checkmark	AO2	
	(ii)	electron kinetic energy needs to be removed \checkmark	AO2	5
	(iii)	water has high specific heat capacity 🗸	AO1	
		water is non-corrosive/cheap ✓	AO1	
			Total	14

Question 6				
(a)	(i)	$k = force/extension \checkmark$	AO1	2
	(ii)	$N m^{-1} \checkmark$	AO1	Z
(b)	(i)	$s = ut + \frac{1}{2} at^2$ or alt used \checkmark	AO1	
		$t^2 - 12/4.9 \checkmark$	AO2	
		1.6 s ✓	AO2	
	(ii)	weight × height change seen \checkmark	AO1	
		53200 J ✓	AO2	
	(iii)	$76 - 12 = 64 \text{ m} \checkmark$	AO2	10
	(iv)	$\frac{1}{2}kx^2 = energy \ stored \ seen \checkmark$	AO1	12
		$k = 2 \times 53200 / (64)^2 \checkmark$	AO2	
		$25.9 \text{ N m}^{-1} \checkmark$	AO2	
	(v)	$T = 2\pi \sqrt{(m/k)}$ seen \checkmark	AO1	
		subst ✓	AO2	
		10.4 s ✓	AO2	
(c)	(i)	$F = kx$ seen \checkmark	AO1	
		$= 25.9 \times 64 = 1660 \text{ N} \checkmark$	AO2	
	(ii)	1660/700 seen or 2.4 g seen ✓	AO2	ŕ
		1.4 g ✓	AO2	6
	(iii)	stiffer cord ✓	AO2	
		less elongation so longer natural length \checkmark	AO2	
			Total	20