

A-LEVEL Physics A

PHYA2 – mechanics, materials and waves Mark scheme

2450 June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

COMPONENT NAME: Unit 2 – Mechanics, materials and waves

COMPONENT NUMBER: PHYA2

Question	Part	Sub	Marking Guidance	Mark	Comments
		Part			

1	а		8300 x 9.81 OR = 81423 ✓ (8300 x 9.81 sin 25) = 3.4×10^4 (N) ✓ (34 411 N) ecf from first line unless g not used msin25 gets zero	2	Penalize use of g=10 <u>here only</u> (35 077 N) Allow 9.8 in any question Correct answer only, gets both marks for all two mark questions
1	b	i	$(E_{\rm k} = \frac{1}{2}mv^2)$ = $\frac{1}{2} \times 8300 \times 56^2 \checkmark$ = 1.3 x10 ⁷ (J) \checkmark (13 014 400) allow use of 8300 only	2	In general: Penalise transcription errors and rounding errors in answers

1	b	ii	$mgh = KE (13\ 014\ 400)$ for mgh allow GPE or E_{ρ} OR 13\ 014\ 400\ /\ 81\ 423\ \checkmarkh = 160 (m) \checkmark (159.8) ecf 1bi	2	Allow use of suvat approach
1	С	i	(work done) by friction \ drag \ air resistance \ resistive forces \checkmark (Energy converted) to internal \ thermal energy \checkmark	2	Allow 'heat'
1	C	ii	0.87 x (8300 x 9.81 x 140 = 9 917 000) OR $v = \sqrt{\left[\frac{2 \times (9.917 000)}{8300}\right]} \checkmark$ = 49 (= 48.88 ms ⁻¹) ✓	2	87% of energy for 140m or 160m only for first mark. Use of 160 (52.26) and/or incorrect or no % (52.4) gets max 1 provided working is shown. Do not credit suvat approaches here.
			Total	10	

2	а	i	Use of $\left(s = \frac{1}{2}gt^2\right)$ OR $t^2 = 2s/g$ \checkmark $t = \sqrt{\frac{2 \times 1.2}{9.81}} \checkmark$ $= 0.49 (0.4946 \text{ s}) \checkmark$ allow 0.5 do not allow 0.50	3	Some working required for full marks. Correct answer only gets 2
2	а	ii	(s = vt) = 8.5 x 0.4946 \checkmark ecf ai = 4.2 m \checkmark (4.20) ecf from ai	2	
2	b	i	$\left(s = \frac{1}{2} (u + v) t\right)$ $t = \frac{2s}{u(+v)} \text{or correct sub into equation above } \checkmark$ $= \frac{2 \times 0.35}{8.5} = 8.2 \times 10^{-2} \text{ (s) } \checkmark (0.0824) \text{ allow } 0.08 \text{ but not } 0.080 \text{ or } 0.1$	2	Allow alternative correct approaches
2	bii		 a = (v-u) /t OR correct substitution OR a= 103 ✓ (= -8.5) / 8.24 x 10⁻² = 103.2) (F = ma =) 75 x (103.2) ✓ ecf from bi for incorrect acceleration due to arithmetic error only, not a physics error (e.g. do not allow a = 8.5. Use of g gets zero for the question. = 7700 N ✓ (7741) ecf (see above) 	3	Or from loss of KE Some working required for full marks. Correct answer only gets 2
			Total	10	

3	а	i	m = W/g) (3.4 x 10 ⁴ / 9.81 =) 3500 (3466 kg) \checkmark	1	Allow use of g=10
3	a a	ii	$\begin{array}{l} (\text{moment} = 34\ 000\ \text{x}\ 5.0\) \ = 1.7\ \text{x}\ 10^5\ \checkmark\ (\text{Nm}) \\ \underline{\text{Nm}}\ \checkmark\ \text{do not allow}\ \text{NM}\ \setminus\ \text{nM}\ \text{etc} \\ \\ \hline 170\ 000\ =\ T\ \text{x}\ \underline{12} \qquad \text{OR} \qquad T = 170\ 000\ /\ \underline{12}\ \checkmark\ \text{ecf aii} \\ = 1.4(167)\ \text{x}\ 10^4\ \checkmark\ (\text{N}) \end{array}$	2	allow in words
3	а	iv	(Component of T perpendicular to lever) = T $\underline{\cos} 24$ OR 14 167 x 0.9135 OR 12942 (N) \checkmark ecf aiii allow 2.5 $\cos 24$ x T (12942) x 2.5 = F x 8.0 OR F = ((12942) x 2.5) / 8.0 \checkmark ecf for incorrect component of T or T on its own F = 4000 (N) \checkmark (4044) ecf ecf for incorrect component of T or T on its own allow 4100 for use of 14 200 (4054)	3	Some working required for full marks. Correct answer only gets 2. Failure to find component of T is max 2 (4400 N)
			total	8	

4	a 5/6	Good/excellent	The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria.	5/6	
			High Level (Good to excellent): 5 or 6 marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question.		
			 Mentions 5 of the following: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure <u>diameter</u> of wires use a micrometer (for the diameter)* apply range of loads or masses measure original length measure or calculate extension (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons 		
			 And 2 of the following: Measure diameter in several places At least 7 different loads* Repeat measurements for the same wire (or measure whilst unloading) 		

		 Use of a <u>travelling microscope</u> or Searle's apparatus \ pointer <u>touching</u> scale \ set square (for parallax reduction) \ Vernier scale (not Vernier calipers) * Monitor diameter change during experiment *These points may appear in a clear diagram 		
3/4	Moderate	 Intermediate Level (Modest to adequate): 3 or 4 marks The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate. Mentions 4 points in total from the following 2 lists: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure diameter of wires (must be stated) use a micrometer (for the diameter)* apply range of loads or masses measure or calculate extension (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons Accuracy Measure diameter in several places At least 7 different loads* Repeat measurements for the same wire (or measure whilst unloading) 	3/4	
		• Use of a travelling microscope or Searle's apparatus \ pointer		

		 touching scale \ set square(for parallax reduction) \ Vernier scale (not Vernier calipers)* Monitor diameter change during experiment *These points may appear in a clear and suitably labelled diagram A four mark answer will have good QWC OR will exceed the specification above and will have at least one of the 5 points from the Accuracy list. 			
1/2	Limited	 Low Level (Poor to limited): 1 or 2 marks The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate. Two valid points from the list For two marks, at least 3 points are required 	1/2		
		 Marking points: Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus measure <u>diameter</u> of wires use a micrometer (for the diameter)* apply range of loads or masses measure original length measure or calculate extension 		6 marks	

 (metre) rule (or equivalent) for the original length or extended length or extension* Calculation of the weight of the mass \ use 'weights' in newtons 	
 Measure diameter in several places At least 7 different loads[*] Repeat measurements for the same wire (or measure whilst unloading) Use of a <u>travelling microscope</u> or Searle's apparatus \ pointer touching scale \ set square(for parallax reduction) \ Vernier scale (not Vernier calipers) * Monitor diameter change during experiment 	

4	b	i	<u>brittle</u> ✓ allow misspellings	1	
			allow:		
			britle, brittleness.		
4	b	ii		3	Allow full credit if strain plotted
			A		correctly
					\$
			Б		
					Allow
					reasonable free
					hand straight
			strain		line.
			For stress- strain:		Toloropoo for
			Straight line labelled 'A' with greater gradient than other line and starting close to origin \checkmark allow small curve in correct direction at end of line.		curve of A: no
			Line labelled 'B' with significant curve and decreasing gradient which may then undulate \checkmark		of the total change in strain
			(forgive one label to be missing)		for their line.

			Both of the above AND axes labelled, y, 'stress' or symbol or F/A, and x, ' <u>strain</u> or symbol or deltaL / L' ✓ (disallow if incorrect units are included but forgive 'PA' etc) (Assume stress-strain if no labels are give – max 2) <u>For strain – stress:</u> Straight line labelled 'A' with lesser gradient than other line ✓ allow small curve in correct direction at end of line. Line labelled 'B' with significant curve and increasing gradient which may then undulate ✓ (allow one label to be missing) Both of the above AND axes labelled, x, 'stress' or symbol or F/A, and y, ' <u>strain</u> or symbol or deltaL / L' ✓ (disallow if incorrect units are included)		Line B must have a curved portion of 20% or more. It must have an initial straight section
					A correct force- extension graph gets max 2
4	С	i	(strain = $\Delta L/L$) strain = 0.24/100 (= 0.0024) OR correct calculation of extension (0.0036) \checkmark (stress = E x strain) stress = 2.80 (x 10 ¹¹) x 0.0024 \checkmark ecf from first mark = 6.7 x10 ⁸ (Pa) \checkmark ecf from first mark	3	Some working required for full marks. Correct answer only gets 2
4	С	ii	$(A = \pi (D/2)^2)$	3	Some working required for full

$\pi(1.4 (x10^{-3})/2)^2 \text{OR} = 1.539 \times 10^{-6} (\text{m}^2) \checkmark \text{ ignore incorrect powers of ten}$ $F = E \times A \times \Delta L / L \qquad \text{OR} = 280 (x10^9) \times 1.539 (x 10^{-6}) 0.0024 \qquad \text{ecf 4ci (incorrect extension or strain)}$ $\text{OR A x their stress from 4ci} \checkmark \text{ecf 4ci for strain and ecf for incorrect area in 4cii but do not accept use of diameter or radius as the area}$ $= 1\ 000 \checkmark (1034.46 \text{ N})$		marks. Correct answer only gets 2 Use of diameter or radius for area gets zero for the question
total	16	

5	а	i	$\sin 60 = 1.47 \sin \theta$ OR $\sin \theta = \sin 60 / 1.47 \checkmark$ $(\sin^{-1} 0.5891) = 36 (^{\circ}) \checkmark (36.0955^{\circ}) (allow 36.2)$	2	
			$(311 \ 0.3031) = 30() + (30.0333) (a10W 30.2)$		AII0W 30.0
5	а	ii	$\frac{\sin \theta_c = 1.33/1.47}{(\sin^{-1} 0.9048) = 65} \text{ (°) } \checkmark (64.79)$	2	Allow 64 for use of 0.9 and 66 for use of 0.91
5	a	iii	Answer consistent with previous answers, e.g. If aii >ai: Ray refracts at the boundary AND goes to the right of the normal \checkmark Angle of refraction > angle of incidence \checkmark this mark depends on the first If aii < ai: TIR \checkmark Angle of reflection = angle of incidence \checkmark Ignore the path of the ray beyond water/glass boundary	2	Approx. equal angles (continuation of the line must touch 'Figure 4' label)
		1	1		
5	b		For Reason or Explanation:	4	
			The angle of refraction should be > angle of incidence when entering the water \checkmark		Allow 'ray doesn't bend
			water has a lower refractive index than glass \ light is faster in water than in glass </td <td></td> <td>towards normal' (at glass/water)</td>		towards normal' (at glass/water)
			TIR could not happen \ there is no critical angle, when ray travels from		Allow optical

	water to oil \checkmark TIR only occurs when ray travels from higher to lower refractive index \ water has a lower refractive index than oil \checkmark		density Boundary in question must be clearly implied
	total	10	

6	a		 One of: (spectral) analysis of light from stars (analyse) composition of stars Chemical analysis Measuring red shift \ rotation of stars ✓ Insufficient answers: 'observe spectra', 'spectroscopy', 'view absorption \emission spectrum', 'compare spectra', 'look at light from stars'. 	1	Allow : measuring wavelength or frequency from a <u>named source</u> of light. Allow any other legitimate application that specifies the source of light. E.g. absorbtion\emission spectra in stars, 'observe spectra of materials'
6	b	i	first order beam first order spectrum first order image ✓	1	Allow 'n=1' , '1' 'one', 1 st
6	b	ii	The light at A will appear white (and at B there will be a spectrum) OR greater intensity at A \checkmark	1	
6	С		$(d = 1/ (\text{lines per mm x } 10^3))$ = 6.757 x 10 ⁻⁷ (m) OR 6.757 x 10 ⁻⁴ (mm) \checkmark	3	Some working required for full marks. Correct

	,			,	
		$(n\lambda = d\sin\theta)$			answer only gets 2
		$= 6.757 \times 10^{-7} \times \sin 51.0 \checkmark \operatorname{ecf} \mathbf{only}$ for :			
		 incorrect power of ten in otherwise correct calculation of d 			Power of 10 error in
		• use of d =1480, 1.48, 14.8 (etc)			d gets max 2.
		from incorrect order in 6bii			For use of d in mm, answer =
		-5.25×10^{-7} (m) \checkmark ecf only for :			5.25 x 10 ⁻⁴ gets
		= 5.25 × 10 (iii) + eci only ior :			max 2
		Incorrect power of ten in otherwise correct d			
		from incorrect order in 6bil			n =2 gets max 2
					unless ecf from 6bii
					use of d=1480
					yields wavelength
6	d	n = d (sin90) / λ OR n = 6.757 x 10^{-7} / 5.25 x 10^{-7} ✓ ecf both numbers from 6c	2		Accept 1.28, 1.3
					Second line gets
		= 1.29 so <u>no more</u> beams observed \checkmark or answer consistent with their working			both marks
		OR			
		$2 = d(\sin \theta) / \lambda$ OR $\sin \theta = 2x 525 \times 10^{-7} / 6757 \times 10^{-7} \checkmark$ ecf both			Conclusion
		numbers from 6c			consistent with
					working
		$\sin\Theta = 1.55$ (so not possible to calculate angle) so <u>no more</u> beams \checkmark			5

		OR sin ⁻¹ (2 x (their λ / their d)) \checkmark			
		(not possible to calculate) so <u>no more</u> beams ✓ ecf			
		total		8	
7	а	number of (complete) waves (passing a point) in 1 second	1		Allow: Cycles
		OR			Allow: unit time
		number of waves / time (for the waves to pass a point)			
		OR			
		(complete number of) oscillations \ vibrations per second			
		OR			
		1/T with T defined as time for 1 (complete) oscillation \checkmark			
			1	1	
7	b	For two marks:	2		Allow
		Oscillation of particles \ medium \ material etc, but not oscillation of wave			Vibration
		is parallel to \setminus in same direction as			Allow direction of
		the direction wave (travels) \checkmark			energy transfer \ wave propagation
		For one mark:			
		Particles\material\medium move(s) \ disturbance \ displacement			
		Parallel to \ in same direction as			
		the direction wave travels			
		OR			
		(oscillations) parallel to direction of wave travel \checkmark			
		The one mark answer with:			
		Mention of compressions and rarefactions			

		OR (Longitudinal waves) cannot be polarised Gets two marks ✓		
7	с	$(f = 1540 / 0.50 \times 10^{-3})$ = 3 100 000 (Hz) \checkmark (3 080 000)	2	
		2sf ✓		
7	d	 No more than two points from either list (max 3): <u>Description</u> Mention of nodes <u>and</u> antinodes Particles not moving at a node Maximum displacement at antinode Particles either side of node in antiphase / between two nodes in phase Variation of amplitude between nodes Explanation A stationary wave (forms) two waves are of <u>equal frequency</u> or wavelength (and amplitude in the same medium) reflected and transmitted waves \ waves travelling in opposite directions, pass through each other superpose / interfere occurs constructive interference at antinodes 	3	Allow 'standing wave'

	$\checkmark \checkmark \checkmark$		
	total	8	
	Total on paper	70	