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Archimedes’s approximation of π 

The constant   is defined to be the circumference of a circle divided by its diameter.  

The value of   has been determined to an accuracy of more than twelve trillion 

decimal places. To the non-mathematician this may appear strange since it is not possible to 

measure the circumference and diameter of a circle to that degree of accuracy; this article 5 

explains how one of the greatest mathematicians of all time found the value of   to a high 

degree of accuracy without requiring any physical measurement. 

Archimedes (287-212 BC) lived in Syracuse, Sicily. He developed many branches of 

mathematics, including calculus, in which he devised methods for finding areas under 

parabolas nearly 2000 years before Newton and Leibniz, and mechanics, in which he found 10 

the centres of gravity of various plane figures and solids and devised a method for calculating 

the weight of a body immersed in a liquid.  

Whilst absorbed in a mathematical problem, Archimedes was kill d by a soldier during the 

capture of Syracuse by the Romans.  

Archimedes’s method for determining the value of   i  d scr bed below. 15 

Fig. C1 shows a circle with unit radius and two regular hexagons. 

The smaller regular hexagon has its vertices on the circle; it is called an inscribed polygon. Its 

perimeter is 6. 

The larger regular hexagon has the midpoints of its edges on the circle; it is called an escribed 

polygon. Its perimeter is 4 3 . 20 

The circumference of the circle is greater than the perimeter, ABCDEF, of the smaller 

hexagon but less than the perimeter, A'B'C'D'E'F' , of the larger hexagon.  

Fig. C1 
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Trigonometric identities 

sin( ) sin cos cos sinA B A B A B    

cos( ) cos cos sin sinA B A B A B   

1
2

tan tan
tan( )       ( ( ) )

1 tan tan

A B
A B A B k

A B



      

Numerical methods 

Trapezium rule: 1
0 1 22
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The Newton-Raphson iteration for solving f( ) 0x  : 1

f( )

f ( )

n
n n

n

x
x x

x
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
 

Probability 

P( ) P( ) P( ) P( )A B A B A B      

P( ) P( )P( | ) P( )P( | )A B A B A B A B        or      
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
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Sample Variance 
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


    

Standard deviation, variances   

The Binomial Distribution 

If ~ B( , )X n p then ( ) Cn r n r
rP X r p q    wh re 1q p   

Mean of X is np 

Hypothesis testing for th  mean of  Normal distribution 

If  2~ N ,X   then 
2

~ N ,X
n



 
 
 

and ~ N(0, 1)
/

X

n






 

Percentage points of the normal distribution  

  

 

Kinematics 

Motion in a straight line Motion in two dimensions 
v u at   t v u a  

21
2

s ut at   
21

2
t t s u a  

 1
2

s u v t    1
2

t s u v  

2 2 2v u as    

21
2

s vt at   
21

2
t t s v a  

  

p 10 5 2 1 

z 1.645 1.960 2.326 2.576 
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Answer all the questions 

 

Section A (60 marks) 

 

1 Express 
2 5

1 2 1x x


 
 as a single fraction. [2] 

  

 

 

 

 

2 Find the first four terms of the binomial expansion of  
1
21 2x .  

 

State the set of values of x for which the expansion is valid. [4] 

 

 

 

 

 

3 Show that points A (1, 4, 9), B (0, 11, 17) and C (3, –10  –7) are collinear.    [4] 

 

 

 

 

 

4 Show that 
4

1

ln ln 5
1r

r

r

 


  [3] 
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9 (a) Express cos 2sin   in the form cos( )R   , where 1
2

0     and R is positive and given 

in exact form. [4] 

 

The function f( ) is defined by  
 

1
f( )

cos 2sink


 


 
,  0 2   , k is a constant. 

 

(b) The maximum value of f( )  is 
 3 5

4


.  

                  Find the value of k. [3] 

 

 

 

 

 

10 The function f( )x is defined by 4 3 2f( ) 2 4 2x x x x x     . 

 

(a) Show that 1x    is a root of f( ) 0.x   [1] 

  

(b) Show that another root of f( ) 0x   lies betw en 1x   and 2x  . [2] 

  

(c) Show that f( ) ( 1)g( )x x x  , where g( )x x ax b    and a and b are integers to be 

determined. [3] 

  

(d) Without further calculation, explain why g( ) 0x   has a root between 1x   and 2.x   [1] 

  

(e) Use the Newt n-Raphson f rmula to show that an iteration formula for finding roots 

of g( ) 0x  may be writt n  

          
3

1 2

2 2

3 2

n
n

n

x
x

x






. 

 

Determine the root of g( ) 0x  which lies between 1x   and 2x  correct to 4 significant 

figures. [3] 
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11 The curve f ( )y x  is defined by the function f( ) e sinxx x  with domain 0 4x   . 

 

(a) (i) Show that the x-coordinates of the stationary points of the curve f ( )y x ,  

when arranged in increasing order, form an arithmetic sequence. 

 

          (ii)     Show that the corresponding y-coordinates form a geometric sequence. [9] 

 

         (b)   Would the result still hold with a larger domain? Give reasons for your answer. [1] 
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Answer all the questions 

 

Section B (15 marks) 

 

The questions in this section refer to the article on the Insert. You should read the article before 

attempting the questions. 

 

 

12  Explain why the smaller regular hexagon in Fig. C1 has perimeter 6. [1]  

  

 

 

 

13 Show that the larger regular hexagon in Fig. C1 has perimeter 4 3 .  [3] 

  

 

 

 

14 Show that the two values of b given on line 36 are equivalent.  [3] 
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15 Fig. 15 shows a unit circle and the escribed regular polygon with 12 edges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Fig. 15 

  

(a)     Show that the perimeter of the polygon is 24tan15. [2] 

  

     (b) Using the formula for tan( )   show that the perimeter of the polygon is 48 24 3 . [3] 

   

 

 

 

 

16 On a unit circle, the ns ribed regul r polygon with 12 edges gives a lower bound for ,  and the 

escribed regular polygon with 12 edges gives an upper bound for .   

 

Calculate the values of these bounds for , giving your answers:  

 

(i) in surd form  

                (ii)     correct to 2 decimal places.  [3] 

 

 

 

END OF QUESTION PAPER
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