January 2019

Mark Scheme

Mock Paper (set1)

Pearson Edexcel GCE A Level Mathematics

Pure Mathematics 2 (9MA0/02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can aet touch with us usina the details on our contact in us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100
- 2. These mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- **bod** benefit of doubt
- **ft** follow through
- the symbol $\sqrt{}$ will be used for correct ft
- **cao** correct answer only
- **cso** correct solution only. There must be no errors in this part of the question to obtain this mark
- **isw** ignore subsequent working
- **awrt** answers which round to
- SC: special case
- **o.e.** or equivalent (and appropriate)
- **d** or **dep** dependent
- **indep** independent
- **dp** decimal places
- **sf** significant figures
- * The answer is printed on the paper or ag- answer given
- 4. All M marks are follow through.

A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

Questi	on Scheme	Marks	AOs
1	$\cos\theta - \sin\left(\frac{1}{2}\theta\right) + 2\tan\theta = \frac{11}{10}$		
(a)	$1 - \frac{1}{2}\theta^2 - \frac{1}{2}\theta + 2\theta \approx \frac{11}{2}$	M1	1.2
		Al	1.1b
	$\Rightarrow \frac{1}{2}\theta^2 - \frac{3}{2}\theta + \frac{1}{10} \approx 0 \Rightarrow 5\theta^2 - 15\theta + 1 \approx 0 *$	A1*	2.1
		(3)	
(b)	$\theta = 0.068$ is valid because θ is small	B1	23
	$\theta = 2.932$ is not valid because θ is large		2.5
		(1)	
		(4 r	narks)
Questi	on 1 Notes:		
(a)			
M1:	At least two of either $\cos\theta \approx 1 - \frac{1}{2}\theta^2$, $\sin\left(\frac{1}{2}\theta\right) \approx \frac{1}{2}\theta$ or $\tan\theta \approx \theta$ substituted into the given		
	equation		
A1:	Substitutes $\cos\theta \approx 1 - \frac{1}{2}\theta^2$, $\sin\left(\frac{1}{2}\theta\right) \approx \frac{1}{2}\theta$ and $\tan\theta \approx \theta$ into the given equation	1 to obtain a	
	correct (un-simplified) approximation or equation. E.g. $1 - \frac{1}{2}\theta^2 - \frac{1}{2}\theta + 2\theta \approx \frac{11}{10}$	or $=\frac{11}{10}$	
A1*:	Obtains $5\theta^2 - 15\theta + 1 \approx 0$ (condone $5\theta^2 - 15\theta + 1 = 0$) with no errors seen in their working		
(b) B1:	States $\theta = 0.068$ is valid because θ is small; and $\theta = 2.932$ is not valid because θ is large		
(b)			
Alt 1	LHS = $\cos\theta - \sin\left(\frac{1}{2}\theta\right) + 2\tan\theta$		
B1:	States $\theta = 0.068$ is valid and $\theta = 2.932$ is not valid based on testing these two va	lues in the	
	original equation		
	Note: $\theta = 0.068 \Rightarrow \text{LHS} = 1.0999 \& \theta = 2.932 \Rightarrow \text{LHS} = -2.3980$		
	Note: $\theta = 0.068218 \Rightarrow LHS = 1.1002 \& \theta = 2.931782 \Rightarrow LHS = -2.398$	34	

Question	Scheme	Marks	AOs
2	$x = 6t + 1, y = 5 - \frac{4}{3t}, t \neq 0$		
	$\left\{t = \frac{x-1}{c} \Rightarrow\right\} y = 5 - \frac{4}{(x-1)}$	M1	1.1b
	$3\left(\frac{x-1}{6}\right)$	Al	1.1b
	$\Rightarrow y = 5 - \frac{4}{\left(\frac{x-1}{2}\right)} \Rightarrow y = 5 - \frac{8}{x-1} \Rightarrow y = \frac{5(x-1)-8}{x-1}$ $\Rightarrow y = \frac{5x-13}{x-1}, x \neq 1 \qquad \{a = 5, b = -13, k = 1\}$	A1	2.1
		(3)	
Alt 1	$\begin{pmatrix} 4 \\ - \end{array} \end{pmatrix} = \begin{pmatrix} 4 \\ - \end{pmatrix} + 1$	M1	1.1b
	$\left\{ l = \frac{1}{3(5-y)} \implies j x = 0 \left(\frac{1}{3(5-y)} \right) + 1 \right\}$	Al	1.1b
	$\Rightarrow x = \frac{8}{(5-y)} + 1 \Rightarrow (x-1)(5-y) = 8 \Rightarrow 5x - xy - 5 + y = 8$ $\Rightarrow 5x - 5 - 8 = xy - y \Rightarrow 5x - 13 = y(x-1) \Rightarrow y = \frac{5x - 13}{x-1}, x \neq 1$	A1	2.1
		(3)	
		(3	marks)
Question	2 Notes:		
M1: Ar	attempt to eliminate t		
A1: A0	which can be un-simplified or simplified or simplified or simplified x and y only which can be un-simplified or simplified	ied	
A1: Us	these correct algebra to show $y = \frac{5x-13}{x-1}, x \neq 1$		

Question	Scheme	Marks	AOs
3 (a)	$\begin{pmatrix} x & y^2 \\ y & y & y \\ y & y & y \\ y & y & y \\ y & y &$	M1	1.1b
	$\{y = x + kx + 14 - 8(x - 5) \implies \} \frac{dx}{dx} = 2x + k + 8(x - 5)$	A1	1.1b
	$\left\{\operatorname{At} x = 3, \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies \right\} \frac{\mathrm{d}y}{\mathrm{d}x} = 2(3) + k + \frac{8}{(3-5)^2} = 0$	dM1	1.1b
	$\Rightarrow 6 + k + \frac{8}{4} = 0 \Rightarrow 6 + k + 2 = 0 \Rightarrow k = -8 *$	A1*	2.1
		(4)	
(b)	$\frac{d^2 y}{dx^2} = 2 - 16(x - 5)^{-2} = 2 - \frac{16}{(x - 5)^3}$		
	When $x = 3$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(3-5)^3}$	M1	1.1b
	$\frac{d^2 y}{dx^2} = 4 > 0 \implies \{\text{local}\} \text{ minimum } \{\text{stationary point at } P\}$	A1	2.1
		(2)	
(b) Alt 1	E.g. $x = 2.9$, $\frac{dy}{dx} = 2(2.9) - 8 + 8(2.9 - 5)^{-2} = -0.38594 < 0$	M1	1.1b
	$x = 3.1, \frac{dy}{dx} = 2(3.1) - 8 + 8(3.1 - 5)^{-2} = 0.41606 > 0$		
	\Rightarrow {local} minimum {stationary point at <i>P</i> }	Al	2.1
		(2)	
(c)	<u>Criteria 1</u> (Accept any one of the two following points)	(2)	
(c)	• At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$	(2)	
(c)	Criteria 1 (Accept any one of the two following points) • At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ • $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2 + 5 \Rightarrow x = 7$	(2)	
(c)	Criteria 1 (Accept any one of the two following points) • At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ • $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2 + 5 \Rightarrow x = 7$ <u>Criteria 2</u> (Accept any one of the two following points)	(2)	
(c)	Criteria 1 (Accept any one of the two following points) • At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ • $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2 + 5 \Rightarrow x = 7$ Criteria 2 (Accept any one of the two following points) • At $x = 6.9$, $\frac{d^2 y}{dx^2} = -0.33 < 0$ and at $x = 7.1$, $\frac{d^2 y}{dx^2} = 0.27 > 0$	(2)	
(c)	$\frac{\text{Criteria 1}}{4} \text{ (Accept any one of the two following points)}} \bullet At x = 7, \frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0• \frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2 + 5 \Rightarrow x = 7\frac{\text{Criteria 2}}{4x^2} \text{ (Accept any one of the two following points)}} \bullet At x = 6.9, \frac{d^2 y}{dx^2} = -0.33 < 0 and at x = 7.1, \frac{d^2 y}{dx^2} = 0.27 > 0• \frac{d^3 y}{dx^3} = \frac{48}{(x-5)^3} and at x = 7, \frac{d^3 y}{dx^3} \left\{ = \frac{48}{(7-5)^3} = 6 \right\} \neq 0$	(2)	
(c)	$\frac{\text{Criteria 1}}{\text{Criteria 1}} \text{ (Accept any one of the two following points)}$ $\text{At } x = 7, \ \frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2+5 \Rightarrow x = 7$ $\frac{\text{Criteria 2}}{dx^2} \text{ (Accept any one of the two following points)}$ $\text{At } x = 6.9, \ \frac{d^2 y}{dx^2} = -0.33 < 0 \text{ and at } x = 7.1, \ \frac{d^2 y}{dx^2} = 0.27 > 0$ $\frac{d^3 y}{dx^3} = \frac{48}{(x-5)^3} \text{ and at } x = 7, \ \frac{d^3 y}{dx^3} \left\{ = \frac{48}{(7-5)^3} = 6 \right\} \neq 0$ At least one of Criteria 1 or Criteria 2	(2)	2.1
(c)	$\frac{\text{Criteria 1}}{\text{Criteria 1}} \text{ (Accept any one of the two following points)}$ $\text{At } x = 7, \ \frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2 + 5 \Rightarrow x = 7$ $\frac{\text{Criteria 2}}{(x-5)^3} \text{ (Accept any one of the two following points)}$ $\text{At } x = 6.9, \ \frac{d^2 y}{dx^2} = -0.33 < 0 \text{ and at } x = 7.1, \ \frac{d^2 y}{dx^2} = 0.27 > 0$ $\frac{d^3 y}{dx^3} = \frac{48}{(x-5)^3} \text{ and at } x = 7, \ \frac{d^3 y}{dx^3} \left\{ = \frac{48}{(7-5)^3} = 6 \right\} \neq 0$ At least one of Criteria 1 or Criteria 2 Both Criteria 1 and Criteria 2 (with correct calculations) and concludes the curve has a {non-stationary} point of inflection at $x = 7$	(2) (2) M1 A1	2.1 2.4
(c)	Criteria 1 (Accept any one of the two following points) • At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ • $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2 + 5 \Rightarrow x = 7$ Criteria 2 (Accept any one of the two following points) • At $x = 6.9$, $\frac{d^2 y}{dx^2} = -0.33 < 0$ and at $x = 7.1$, $\frac{d^2 y}{dx^2} = 0.27 > 0$ • $\frac{d^3 y}{dx^3} = \frac{48}{(x-5)^3}$ and at $x = 7$, $\frac{d^3 y}{dx^3} \left\{ = \frac{48}{(7-5)^3} = 6 \right\} \neq 0$ At least one of Criteria 1 or Criteria 2 Both Criteria 1 and Criteria 2 (with correct calculations) and concludes the curve has a {non-stationary} point of inflection at $x = 7$	(2) (2) M1 A1 (2)	2.1 2.4
(c) (d)	<u>Criteria 1</u> (Accept any one of the two following points) • At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ • $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2 + 5 \Rightarrow x = 7$ <u>Criteria 2</u> (Accept any one of the two following points) • At $x = 6.9$, $\frac{d^2 y}{dx^2} = -0.33 < 0$ and at $x = 7.1$, $\frac{d^2 y}{dx^2} = 0.27 > 0$ • $\frac{d^3 y}{dx^3} = \frac{48}{(x-5)^3}$ and at $x = 7$, $\frac{d^3 y}{dx^3} \left\{ = \frac{48}{(7-5)^3} = 6 \right\} \neq 0$ At least one of Criteria 1 or Criteria 2 Both Criteria 1 and Criteria 2 (with correct calculations) and concludes the curve has a {non-stationary} point of inflection at $x = 7$ Sign change method is not valid because either • the curve is not defined at $x = 5$ • the curve is not continuous over the interval (4.5, 5.5)	(2) (2) M1 A1 (2) B1	2.1 2.4 2.4
(c) (d)	<u>Criteria 1</u> (Accept any one of the two following points) • At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$ • $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \Rightarrow (x-5)^3 = 8 \Rightarrow x = 2+5 \Rightarrow x = 7$ <u>Criteria 2</u> (Accept any one of the two following points) • At $x = 6.9$, $\frac{d^2 y}{dx^2} = -0.33 < 0$ and at $x = 7.1$, $\frac{d^2 y}{dx^2} = 0.27 > 0$ • $\frac{d^3 y}{dx^3} = \frac{48}{(x-5)^3}$ and at $x = 7$, $\frac{d^3 y}{dx^3} \left\{ = \frac{48}{(7-5)^3} = 6 \right\} \neq 0$ At least one of Criteria 1 or Criteria 2 Both Criteria 1 and Criteria 2 (with correct calculations) and concludes the curve has a {non-stationary} point of inflection at $x = 7$ Sign change method is not valid because either • the curve is not defined at $x = 5$ • the curve is not continuous over the interval (4.5, 5.5)	(2) (2) M1 A1 (2) B1 (1)	2.1 2.4 2.4

Questi	on 3 Notes:
(a)	
M1:	At least one of either $x^2 \to \pm Ax$ or $kx \to k$ or $-\frac{8}{(x-5)} \to \pm B(x-5)^{-2}$; $A, B \neq 0$
A1:	$\frac{dy}{dx} = 2x + k + 8(x-5)^{-2}$, which may be un-simplified or simplified
dM1	dependent on the previous M mark
	Complete strategy of substituting $x = 3$ into their equation for $\frac{dy}{dx}$ and setting $\frac{dy}{dx}$ equal to 0
A1*:	Correctly shows $k = -8$ with no errors in their working
(b)	
M1:	Evidence of substituting $x = 3$ into an expression for $\frac{d^2 y}{dx^2}$ which is in the form $\pm \alpha \pm \beta (x-5)^{-3}$;
	$\alpha, \beta \neq 0$
A1:	For a correct calculation, a valid reason and a correct conclusion
(b)	
Alt 1	
M1:	Uses $\frac{dy}{dx}$ which is in the form $\pm \alpha x - 8 \pm \beta (x-5)^{-2}$; $\alpha, \beta \neq 0$ and finds values for $\frac{dy}{dx}$ either side
	of $x = 3$
A1:	For correct calculations, a valid reason and a correct conclusion
(c)	
M1:	See scheme
A1:	See scheme
(d)	
B1:	States that the sign change method is not valid together with an acceptable reason as indicated in the scheme

Question	Scheme	Marks	AOs
4	$f(x) = x^3 - 6x^2 + 7x + 2, x \in \mathbb{R}$		
(a)	$f(x) = (x - 2)(x^2 - 4x - 1)$	M1	2.2a
		A1	1.1b
		(2)	
(b)	{Note: $(x-2) = 0 \Rightarrow x_Q = 2$ is known and at $P, R, (x^2 - 4x - 1) = 0$ }		
(i), (ii)	$(x-2)^2 - 4 - 1 = 0$ or $x = \frac{4 \pm \sqrt{16 - 4(1)(-1)}}{2(1)}$	M1	1.1b
	$\Rightarrow x_P = 2 - \sqrt{5}$ and $x_R = 2 + \sqrt{5}$	A1	1.1b
		(2)	
(c)	$\sin^3\theta - 6\sin^2\theta + 7\sin\theta + 2 = 0, -\pi \leqslant \theta \leqslant 12\pi,$		
	Deduces that there are 14 real solutions for $-\pi \leq \theta \leq 12\pi$	B1	2.2a
	Correct justification. E.g. Both • $\sin \theta = 2$ and $\sin \theta = 2 + \sqrt{5} = 4.236$ have no real solutions and either • $\sin \theta = 2 - \sqrt{5} = -0.236$ has 2 real solutions for each interval of 2π . So there are 12 real solutions in the interval $[0, 12\pi]$ and 2 real solutions in the interval $[-\pi, 0]$ • $\sin \theta = 2 - \sqrt{5} = -0.236$ has 2 real solutions for each interval of 2π . So there are 12 real solutions in the interval $[-\pi, 11\pi]$ and 2 real solutions in the interval $[11\pi, 12\pi]$ • $\sin \theta = 2 - \sqrt{5} = -0.236$ has 2 real solutions for each interval of 2π . So there are 14 real solutions in the interval $[-2\pi, 12\pi]$ and no real solutions in the interval $[-2\pi, -\pi]$ • $\sin \theta = 2 - \sqrt{5} = -0.236$ has two real solutions in each of $[-\pi, 0], [\pi, 2\pi], [3\pi, 4\pi], [5\pi, 6\pi], [7\pi, 8\pi], [9\pi, 10\pi]$ and $[11\pi, 12\pi]$	B1ft	2.4
		(2)	
		(6 1	narks)

Questio	n 4 Notes:
(a)	
M1:	Deduces $(x-2)$ is a factor of $f(x)$ and attempts to find a quadratic factor of $f(x)$ by either
	equating coefficients or by algebraic long division
A1:	$(x-2)(x^2-4x-1)$
(b)	
(i), (ii)	
M1:	Correct method (i.e. completing the square or applying the quadratic formula) to solve a 3TQ.
	Note: M1 can be given here for at least one of either $2 - \sqrt{5}$ or $2 + \sqrt{5}$ written down in part (b).
A1:	Finds and identifies the correct exact x coordinate of P and the correct exact x coordinate of R
(c)	
B1:	Correct deduction of 14 (real solutions)
B1:	See scheme

Questi	on Scheme	Marks	AOs
5	Let x_p be the positive solution and x_N be the negative solution of $f(x) = 0$		
	Note: $y = f(x)$ is symmetrical about the line $x = \frac{5}{3}$		
(a)	$f(x) = 7 - 3x - 5 = 0 \Longrightarrow 3x - 5 = 7$ at least one of either	M1	2.1
	• $3x - 5 = 7 \implies x_p = 4$ • $3x - 5 = -7 \implies x_N = -\frac{2}{3}$	A1	1.1b
	Area $(R) = \frac{1}{2} \left(4 - \frac{2}{3} \right) (7)$ or $2 \left(\frac{1}{2} \left(4 - \frac{5}{3} \right) (7) \right)$ or $2 \left(\frac{1}{2} \left(\frac{5}{3} - \frac{2}{3} \right) (7) \right)$	M1	3.1a
	$=\frac{49}{3}$ or $16\frac{1}{3}$ (units) ²	A1	1.1b
		(4)	
(b)	7 - 3x - 5 = k, k is a constant, has two distinct real solutions		
	Deduces that $k < 7$	B1	2.2a
		(1)	
		(5 r	narks)
Questi	on 5 Notes:		
(a) M1:	Complete process of using the modulus function $y = f(x)$ to find at least one of the where $y = f(x)$ cuts through the x-axis.	e x coordina	ates
A1:	At least one of either $x = 4$ or $x = -\frac{2}{3}$		
M1:	Finds at least one value where $y = f(x)$ cuts through the x-axis together with a confind the Area (R); e.g.	nplete proce	ss to
	• $\frac{1}{2}$ (their x_P – their x_N)(7)		
	• $2\left(\frac{1}{2}\left(\text{their } x_p - \frac{5}{3}\right)(7)\right)$, where their $x_p > \frac{5}{3}$		
	• $2\left(\frac{1}{2}\left(\frac{5}{3} - \text{their } x_N\right)(7)\right)$, where their $x_N < 0$		
A1:	See scheme		
(b) B1:	 Uses Figure 3 and the equation y = f(x) to deduce the correct answer. E.g. k < 7 {k: k < 7} 		

Questi	on Scheme	Marks	AOs
6	$\left\{ (2+kx)^{-4} = 2^{-4} \left(1 + \frac{kx}{2} \right)^{-4} = \frac{1}{16} \left(1 + (-4) \left(\frac{kx}{2} \right) + \frac{(-4)(-5)}{2!} \left(\frac{kx}{2} \right)^2 + \dots \right) \right\}$		
(a)	For the r^2 term: $(\frac{1}{2})(-4)(-5)(\frac{k}{2})^2 = \int_{-\infty}^{\infty} \frac{5}{k^2}$	M1	1.1b
	For the x term: $\left(\frac{16}{16}\right)^{-}$ 2! $\left(\frac{1}{2}\right)^{-}$ $\left(\frac{1}{32}\right)^{-}$ $\left(\frac{1}{32}\right)^{-}$	A1	1.1b
	$\frac{1}{16} \frac{(-4)(-5)}{2!} \left(\frac{k}{2}\right)^2 = \frac{125}{32} \implies \frac{5}{32} k^2 = \frac{125}{32} \implies k^2 = 25 \implies k = \dots \implies A = \dots$	dM1	3.1a
	$\left\{A = -\frac{4}{32}k \implies\right\} A = -\frac{4}{32}(5)$	M1	2.2a
	$A = -\frac{5}{8}$ or -0.625	A1	1.1b
		(5)	
(b)	f(x) is valid when $\left \frac{kx}{2}\right < 1 \implies \left \frac{5x}{2}\right < 1 \implies x < \frac{2}{5}$		
	E.g.		
	• As $x = \frac{1}{10}$ lies in the interval $ x < \frac{2}{5}$, the binomial expansion is valid	B1ft	23
	• As $\left \left(\frac{5}{2}\right)\left(\frac{1}{10}\right)\right = \frac{1}{4} < 1$, the binomial expansion is valid	Din	2.5
		(1)	
		(6 1	narks)
Questi	on 6 Notes:		
(a) M1:	For either $\frac{(-4)(-5)}{2!}$ or $\left(\frac{k}{2}\right)^2$ or $\left(\frac{kx}{2}\right)^2$ or $\frac{(-4)(-5)}{2}$ or 10 as part of their x^2 coefficients of the second seco	efficient	
A1:	For $\left(\frac{1}{16}\right)\frac{(-4)(-5)}{2!}\left(\frac{k}{2}\right)^2$ or $\frac{5}{32}k^2$ or equivalent as part of their x^2 coefficient		
dM1:	dependent on the previous M mark		
	A complete strategy to find a value for k and use their k to find a value for A		
M1:	Deduces and applies $A = -\frac{4}{32}$ (their k) or $A = -\frac{1}{8}$ (their k)		
A1:	$A = -\frac{5}{8}$ or -0.625		
(b) B1ft:	See scheme		
	Note: Allow follow through for applying either $ x < \frac{2}{\text{their } k}$ or $\left(\frac{\text{their } k}{2}\right)\left(\frac{1}{10}\right)$		

Question	Scheme	Marks	AOs
7	$f(x) = \frac{2}{x} - e^x + 2x^2, \ x \in \mathbb{R}, \ x \neq 0$		
(a)	Evaluates both $f(-1.5)$ and $f(-1)$	M1	1.1b
	f(-1.5) = 2.943536507 and $f(-1) = -0.3678794412Sign change and as f(x) is continuous \alpha lies between -1.5 and -1$	A1	2.4
		(2)	
(b)	(i) $\{x_3 = \} -1.0428$	B1	1.1b
	(ii) $\{\alpha = \} -1.06$ (2 dp)	B1	2.2a
		(2)	
(c)	$\{x_2 = \} \ 3 - \left(\frac{-1.4189}{-8.3078}\right)$	M1	1.1b
	$\{= 2.829208695\} = 2.83 (2 \text{ dp})$	A1	1.1b
		(2)	
(d)	• Draws a tangent to the curve at x = 1.5 and identifies (possibly by writing x ₂) where the tangent cuts the <i>x</i> -axis	M1	1.1b
	 and concludes either second approximation is not good because it is not in the interval [1.5, 3] x₂ (which is indicated on Figure 3) is nowhere near the root β 	A1	2.4
		(2)	
		(8 1	narks)

Questi	on 7 Notes:
(a)	
M1:	Evaluates both $f(-1.5)$ and $f(-1)$
A1:	f(-1.5) = awrt 3 or f(-1.5) = 2 (truncated) and $f(-1) = awrt - 0.4 or f(-1) = -0.3 (truncated)$
	and a correct conclusion
(b)(i)	
B1:	See scheme
(b)(ii)	
B1:	Deduces (e.g. using further iterations) that $\alpha = -1.06$ accurate to 2 dp
(c)	
M1:	Attempts $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$; $x_1 = 3$; which can be evidenced by $3 - \left(\frac{-1.4189}{-8.3078}\right)$
A1:	2.83
(d)	
M1:	See scheme
A1:	See scheme

Question	Scheme	Marks	AOs
8 (a)	Deduces that the radius of the circle is 6	B1	2.2a
	$(x - 0)^2 + (x + 6)^2 - 26$	M1	1.1b
	(x-9) + (y+0) = 50	A1	1.1b
		(3)	
(b)	Let <i>d</i> be the distance from $(9, -6)$ to <i>l</i>		
	$d^2 + 4^2 = 6^2 \Longrightarrow d^2 = \dots$	M1	3.1a
	$d = \sqrt{20}$ or $2\sqrt{5}$	A1	1.1b
		dM1	2.2a
	$\{1:\} y = -6 + 2\sqrt{3}, y = -6 - 2\sqrt{3}$	A1	1.1b
		(4)	
(b) Alt 1	Either $\left\{x = 9 + \frac{8}{2} = 13 \Rightarrow\right\}$ $(13 - 9)^2 + (y + 6)^2 = 36 \Rightarrow y =$ or $\left\{x = 9 - \frac{8}{2} = 5 \Rightarrow\right\}$ $(5 - 9)^2 + (y + 6)^2 = 36 \Rightarrow y =$	M1	3.1a
	$\{l:\}$ $y = -6 + 2\sqrt{5}$	A1	1.1b
	$(l_{1}) = -6 - 2\sqrt{5}$	dM1	2.2a
	$\{i, j\} y = -0 - 2\sqrt{3}$	A1	1.1b
		(4)	
		(7 1	narks)

Questi	on 8 Notes:
(a) B1:	Deduces that the radius of the circle is 6. This can be achieved by either • Stating that $r = 6$ or radius = 6 or $r^2 = 36$ • Writing $(r + \alpha)^2 + (r + \beta)^2 = 36$ or 6^2 : $\alpha + \beta \neq 0$
M1	$(x+9)^2 + (y+6)^2 - k \cdot k > 0$
	$(x \pm y) + (y \pm 0)^2 - k, \ k \ge 0$
AI:	(x-9) + (y+0) = 50 or $(x-9) + (y+0) = 0$ o.e.
(b) M1:	Uses the circle property "the perpendicular from the centre to a chord bisects the chord" in a
	complete strategy of writing an equation of the form $d^2 + \left(\frac{8}{2}\right)^2 = (\text{their } r)^2$ and progresses as far as
	$d^2 = \dots$
A1:	$d = \sqrt{20}$ or $2\sqrt{5}$
dM1:	depends on the previous M mark
	Deduces the horizontal line <i>l</i> is <i>d</i> units from the line $y = -6$ and so writes both
	• $y = -6 + (\text{their } d)$ and $y = -6 - (\text{their } d)$
A1:	For either:
	• $y = -6 + 2\sqrt{5}$ and $y = -6 - 2\sqrt{5}$
	• $y = -6 + \sqrt{20}$ and $y = -6 - \sqrt{20}$
(b)	
Alt 1	
M1:	Uses the circle property "the perpendicular from the centre to a chord bisects the chord" in a complete strategy of substituting either $x = 13$ or $x = 5$ into their circle equation and progresses as far as $y =$
A1:	For $y = -6 + 2\sqrt{5}$ or $y = -6 + \sqrt{20}$
dM1:	depends on the previous M mark
	Finds y in the form $y = -6 + (\text{their } d)$, deduces the other horizontal line l is d units below the line $y = -6$ and so writes $y = -6 - (\text{their } d)$
A1:	For either:
	• $y = -6 + 2\sqrt{5}$ and $y = -6 - 2\sqrt{5}$
	• $y = -6 + \sqrt{20}$ and $y = -6 - \sqrt{20}$

Question	Scheme		Marks	AOs
9 (a)	$\{y = ab' \implies\} \log_{10} y = \log_{10}(ab') \implies \log_{10} y = \log_{10} a + \log_{10} b'$		M1	1.1b
	$\Rightarrow \log_{10} y = t \log_{10} b + \log_{10} a , \ \{$	where $c = \log_{10} a$ }	A1	2.1
			(2)	
(b)	$c = \log_{10} a = 2.23,$	$m = \log_{10} b = -0.076$		
	$\Rightarrow a = 10^{2.23} \{= 169.8243652\}$	$\Rightarrow b = 10^{-0.076} \{= 0.8394599865\}$	M1	1.1b
	<i>a</i> = 170 (2 sf)	and $b = 0.84 (2 \text{ sf})$	A1	1.1b
			(2)	
(c)	$y = (170)(0.84)^t$			
	(i) $\{a = "170" \Rightarrow\}$ e.g.			
	 "170" milligrams of antibic the initial dose of the antibi	otic were initially given to the patient otic is estimated as "170" milligrams	B1ft	3.4
	(ii) $\{b = "0.84" \Rightarrow\}$ e.g. after the antibiotic is first given the amount of antibiotic in the patient's bloodstream reduces by approximately "16%" per hour			3.4
(d)	$30 = (170)(0.84)^{t} \Rightarrow \frac{30}{170} = (0.84)^{t} \Rightarrow \ln\left(\frac{30}{170}\right) = \ln(0.84)^{t}$ $\Rightarrow \ln\left(\frac{30}{170}\right) = t\ln(0.84) \Rightarrow t = \frac{\ln\left(\frac{30}{170}\right)}{\ln(0.84)}$		M1	3.4
	$\{t = 9.948766031 \Rightarrow\} \ t = 9.9(1)$	nours) (1 dp)	A1	1.1b
(d)	$\log_{10} 30 = -0.076t + 2.23 \implies t = -100000000000000000000000000000000000$	$\frac{2.23 - \log_{10} 30}{0.076}$	M1	3.4
Alt I	$\{t = 9.90629928 \Rightarrow\} t = 9.9$ (here)	ours) (1 dp)	A1	1.1b
			(2)	
(e)	e.g. As $t = 9.9$ is outside of the exp have enough evidence to deduce the valid. So, the estimate in part (d) sl	berimental data $0 \le t \le 5$, we do not at the model $y = (170)(0.84)^t$ is still hould be treated with caution.	B1	3.5b
	(9 marks)			

Questi	on 9 Notes:
(a)	
M1:	Starting from $y = ab^t$, takes logs of both sides and uses the addition law of logarithms to
	progress as far as $\log_{10} y = \log_{10} a + \log_{10} b^t$
A1:	Starting from $y = ab^t$, correctly shows that $\log_{10} y = t \log_{10} b + \log_{10} a$ with no errors seen
Note:	M1 (special case) can be given in part (a) for stating $c = \log_{10} a$
(b)	
M1:	For either $a = 10^{2.23}$ or $b = 10^{-0.076}$
A1:	a = 170 and $b = 0.84$
(c)(i)	
B1ft:	Correct practical interpretation of their a , where their $a > 0$
(c)(ii)	
B1ft:	Correct practical interpretation of their b, where their b: $0 < b < 1$
(d)	
M1:	Substitutes $y = 2.5$ into the model $y = (\text{their } a)(\text{their } b)^t$ and rearranges their equation to give $t =$
A1:	9.9 (hours) (1 dp)
(d)	
Alt 1	
M1:	Substitutes $y = 30$, $m = -0.076$ and $c = 2.23$ into the model $\log_{10} y = mt + c$ and rearranges their
	equation to give $t =$
A1:	9.9 (hours) (1 dp)
(e)	
B1:	E.g. Estimate should be treated with caution because $t = 9.9$ is outside the range of times,
	i.e. $0 \le t \le 5$, for which the model $y = (170)(0.84)^t$ is valid

Question	Scheme	Marks	AOs
10 (a)	$\frac{\mathrm{d}A}{\mathrm{d}t} \propto \sqrt{A} \implies \frac{\mathrm{d}A}{\mathrm{d}t} = k\sqrt{A} \text{ or } \frac{\mathrm{d}A}{\mathrm{d}t} = kA^{\frac{1}{2}}$	B1	3.1b
	$\int \frac{1}{A^{\frac{1}{2}}} \mathrm{d}A = \int k \mathrm{d}t$	M1	1.1b
	$\left\{\int A^{-\frac{1}{2}} dA = \int k dt \implies \right\} \frac{A^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \{+c\} \text{or} 2A^{\frac{1}{2}} = kt \{+c\}$	A1	1.1b
	$\{t=0, A=9 \Rightarrow\} 2\sqrt{9} = k(0) + c$		3.4
	$\Rightarrow c = 6 \Rightarrow 2A^{\frac{1}{2}} = kt + 6$ {t = 6, A = 56.25 \Rightarrow } 2\sqrt{56.25} = k(6) + 6	dM1	1.1b
	$\Rightarrow 15 = 6k + 6 \Rightarrow k = \frac{9}{6} \Rightarrow k = \frac{3}{2}$ $\Rightarrow 2A^{\frac{1}{2}} = \frac{3}{2}t + 6 \Rightarrow A^{\frac{1}{2}} = \frac{3}{4}t + 3 \Rightarrow A = \left(\frac{3}{4}t + 3\right)^{2} *$	A1*	2.1
		(6)	
(b) (i), (ii)	Either • $t = 12, A = \left(\frac{3}{4}(12) + 3\right)^2 = 144 \{\approx 143.78\}$ $t = 18, A = 272.25 \{\approx 271.19\}$ $t = 24, A = 441 \{> 334.81\}$ $\{t = 30, A = 650.25 \{> 337.33\}\}$ or • $A = 143.78 \Rightarrow 143.78 = \left(\frac{3}{4}t + 3\right)^2 \Rightarrow t = 11.98777 \{\approx 12\}$ $A = 271.19 \Rightarrow t = 17.95713 \{\approx 18\}$ $A = 334.81 \Rightarrow t = 20.39709 \{< 24\}$ $\{A = 337.33 \Rightarrow t = 20.48873 \{< 30\}\}$	M1	3.4
	Biologist's model works well for $t = 12$ and $t = 18$ but appears to give an overestimate for A (or does not work well) when $t = 24$ and $t = 30$	A1	3.5a
	 E.g. The biologist's model appears to break down for large values of <i>t</i>. This may be because the biologist's model predicts values for <i>A</i> which are greater than the total surface area of the piece of bread used in the experiment. The biologist's results indicate an upper limit for <i>A</i>, but the biologist's model does not give an upper limit for <i>A</i>. 	B1	3.2a
		(3)	
		(9 ו	marks)

Questi	on 10 Notes:
(a)	
B1:	Translates the biologist's model regarding proportionality into a differential equation, which
	involves a constant of proportionality. E.g. $\frac{dA}{dt} \propto \sqrt{A} \implies \frac{dA}{dt} = k\sqrt{A}$
M1:	Correct method of separating the variables A and t in their differential equation
A1:	$\frac{A^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt$ or $2A^{\frac{1}{2}} = kt$, with or without a constant of integration
M1:	Some evidence of applying the measurements $t = 0$, $A = 9$ or $A = 9.00$ to a changed
	equation containing a constant of integration. e.g. c
dM1:	dependent on the previous M mark
	Applies $t = 6$, $A = 56.25$ and their value of c to their changed equation which contains their
	constant of proportionality
A1*:	Shows that $A = \left(\frac{3}{4}t + 3\right)^2$, with no errors in their working
(b)	
(i), (ii)	
M1:	Uses the model found in part (a) to find
	• either values for A when $t = 12$, $t = 18$ and $t = 24$
	• or values for t when $A = 143.78$, $A = 271.19$ and $A = 334.81$
A1:	• Either $t = 12 \Rightarrow A = 144$, $t = 18 \Rightarrow A = awrt 272$ and $t = 24 \Rightarrow A = 441$
	• or $A = 143.78 \Rightarrow t = awrt 12$, $A = 271.19 \Rightarrow t = awrt 18$ and $A = 334.81 \Rightarrow t = awrt 20$
	and evaluates (see scheme) the outcomes of the model
B1:	See scheme

Question	Scheme		AOs	
11	$f(x) = \frac{\sin 2x}{-3 + \cos 2x}, \qquad 0 \leqslant x \leqslant \pi$			
(a)	$\begin{cases} u = \sin 2x \qquad v = -3 + \cos 2x \\ \frac{du}{dx} = 2\cos 2x \qquad \frac{dv}{dx} = -2\sin 2x \end{cases}$			
	$f'(x) = \frac{(-3 + \cos 2x)(2\cos 2x) - (\sin 2x)(-2\sin 2x)}{(-2\sin 2x)}$	M1	2.1	
	$(-3+\cos 2x)^2$		1.1b	
	$f'(x) = 0 \implies (-3 + \cos 2x)(2\cos 2x) - (\sin 2x)(-2\sin 2x) = 0$	M1	1.1b	
	$-6\cos 2x + 2\cos^2 2x + 2\sin^2 2x = 0 \implies -6\cos 2x + 2 = 0$ $\implies \cos 2x = \frac{1}{3} *$	A1*	2.1	
		(4)		
(b)	Maximum turning point for (i) $y = f(3x) + 5$, (ii) $y = -f\left(\frac{1}{4}x\right)$			
	$\{\cos 2x = \frac{1}{3} \Rightarrow \text{Principal Value} = 1.2309593 \}$			
	(i) For either • $\left\{\cos 6x = \frac{1}{3} (2 \text{ nd sol}^n) \Rightarrow \right\} x = \frac{2\pi - 1.2309593}{6}$ • $\left\{\cos 2x = \frac{1}{3} (2 \text{ nd sol}^n) \Rightarrow \right\} 3x = \frac{2\pi - 1.2309593}{2} \Rightarrow x =$	M1	3.1a	
	$\Rightarrow x = 0.842037 = 0.84 (2 \text{ dp})$		1.1b	
	(ii) For either • $\left\{\cos\left(\frac{1}{2}x\right) = \frac{1}{3} \text{ (1st sol}^n) \Rightarrow\right\} x = 2(1.2309593)$ • $\left\{\cos 2x = \frac{1}{3} \text{ (2nd sol}^n) \Rightarrow\right\} \frac{1}{4}x = \frac{1.2309593}{2} \Rightarrow x =$	M1	3.1a	
	$\Rightarrow x = 2.461918 = 2.46 (2 \text{ dp})$	A1	1.1b	
		(4)		
	(8 marks)			

Questi	on 11 Notes:
(a)	
M1:	Attempts to differentiate by using the quotient rule with $u = \sin 2x$ and $v = -3 + \cos 2x$
	or attempts to differentiate by using the product rule with $u = \sin 2x$ and $v = (-3 + \cos 2x)^{-1}$
A1:	Correct $f'(x)$, which can be un-simplified or simplified
M1:	Sets $f'(x) = 0$ and proceeds with their working to set the numerator of $f'(x)$ equal to 0
A1*:	Shows $\cos 2x = \frac{1}{3}$ with no errors seen in their working
(b)(i)	
M1:	• Attempts to find the second solution for $\cos 6x = \frac{1}{3}$
	E.g. $x = \frac{2\pi - 1.2309593}{6} = \frac{5.052225}{6}$
	• Attempts to find the second solution of $\cos 2x = \frac{1}{3}$ and proceeds to divide their result by 3
	E.g. $3x = \frac{2\pi - 1.2309593}{2} \implies x = \frac{2.526112}{3}$
A1:	0.84 (2 dp) or anything that rounds to 0.84
(b)(ii)	
M1:	• Attempts to find the first solution for $\cos\left(\frac{1}{2}x\right) = \frac{1}{3}$
	E.g. $x = 2(1.2309593)$
	• Attempts to find the first solution of $\cos 2x = \frac{1}{3}$ and proceeds to multiply the result by 4
	E.g. $\frac{1}{4}x = \frac{1.2309593}{2} \implies x = 4(0.615479)$
A1:	2.46 (2 dp) or anything that rounds to 2.46

Question	Scheme		AOs
12 (a)	Total mass = $\frac{4500(1 - (0.98)^{23})}{1 - 0.98}$ or $\frac{4500((0.98)^{23} - 1)}{0.98 - 1}$	M1	3.1b
	= 83621.86152 = 83600 (tonnes) (3 sf)	A1	1.1b
(b)	Expected mass in the year $2040 = 4500(0.98)^{23-1}$	M1	3.4
	= 2885.268132 = 2890 (tonnes) (3 sf)	A1	1.1b
		(2)	
(c)	Total cost = $800(1500(23)) + 600(83621 86152 - 1500(23))$	M1	3.1b
		M1	1.1b
	= 800(34500) + 600(49121.86152)		
	= 27600000 + 29473116.91		
	= 57073116.91		
	$\Rightarrow x = (\pounds) 57.1 \text{ (million) } (3 \text{ sf})$		3.2a
		(3)	
(c)	(c) Total cost = $200(1500(23)) + 600(83621.86152)$ Alt 1		3.1b
Alt 1			1.1b
	= 200(34500) + 600(49121.86152)		
	= 6900000 + 50173116.91		
	= 57073116.91		
	$\Rightarrow x = (\pounds) 57.1 \text{ (million)} (3 \text{ sf})$	A1	3.2a
		(3)	
		(7 1	narks)

Quest	ion 12 Notes:
(a)	
M1:	Complete method of applying the correct geometric series summation formula
	with either $n = 22$ or $n = 23$, $a = 4500$ and $r = 0.98$
A1:	Correct answer to 3 significant figures of 83600 (tonnes)
(b)	
M1:	Uses the geometric series model to apply the correct <i>n</i> th term formula
	with either $n = 22$ or $n = 23$, $a = 4500$ and $r = 0.98$
A1:	Correct answer to 3 significant figures of 2890 (tonnes)
(c)	
M1:	A <i>complete strategy</i> to find the total cost
M1:	For either
	• $800(1500(23)) = 27600000\}$
	• 600(83621.86152 1500(23)) {= 29473116.91}
	• $800(1500(22)) = 26400000$
	• 600("80736.59338" – 1500(22)) {= 28641956.03 }
A1:	Correct answer of $x = (\pounds)57.1$ (million) (3 sf)
	Note: Using rounded answer from part (a) gives
	• $x = 27600000 + 29460000 = 57060000 = (\pounds)57.1$ (million) (3 sf)
(c)	
Alt 1	
M1:	A complete strategy to find the total cost
M1:	For either
	• $200(1500(23)) = 6900000$
	• 600(83621.86152) {= 50173116.91 }
	• $200(1500(22)) = 6600000$
A1:	Correct answer to 3 significant figures of $x = (\pounds)57.1$ (million)
	Note: Using rounded answer in part (a) gives
	• $6900000 + 50160000 = 57060000 \Rightarrow x = (\pounds)57.1 \text{ (million)} (3 \text{ sf})$
	Note: Using $n = 22$ throughout gives (a) 80736.59338 (b) 2944.151155 (c) 55.04195603

Quest	on Sch	Scheme		AOs	
13	$x = 6\cos t , \ y = 5$	$x = 6\cos t , \ y = 5\sin 2t; \ \ 0 \leqslant t \leqslant \frac{\pi}{2}$			
	$\int \int y \frac{dx}{dt} \left\{ dt \right\} = \int (5\sin 2t) (-6\sin t) \left\{ dt \right\}$		M1	2.1	
	$\left(\int y \frac{dt}{dt} \left\{ \frac{dt}{dt} \right\} = \int (5 \sin 2t) (-6 \sin t) \left\{ \frac{dt}{dt} \right\}$		A1	1.1b	
	$= \int (5(2\sin t\cos t))(-6\sin t)\{dt\}$		M1	1.1b	
	$= -60 \int \sin^2 t \cos t \{ \mathrm{d}t \}$				
	$= -60 \left[\frac{1}{-\sin^3 t} \right] =$	$-20[\sin^3 t]$	M1	3.1a	
			A1	1.1b	
	$\begin{cases} \text{Limits: } x = 0 \implies 0 = 6\cos t \implies t = -1 \end{cases}$	$\frac{\pi}{2}; \ x = 3 \Longrightarrow 3 = 6\cos t \Longrightarrow t = \frac{\pi}{3} $			
	Area $(R) = \int_{0}^{3} y dx = -20 \left[\sin^{3} t \right]_{\frac{\pi}{2}}^{\frac{\pi}{3}} = -20 \left(\sin^{3} \left(\frac{\pi}{3} \right) - \sin^{3} \left(\frac{\pi}{2} \right) \right)$		M1	1.1b	
	$= -20\left(\left(\frac{\sqrt{3}}{2}\right)^3 - 1\right) = -20\left(\frac{3}{8}\sqrt{3} - 1\right) = 20 - \frac{15}{2}\sqrt{3} *$		A1*	2.1	
			(7)		
	(7 marks)			narks)	
Questi	uestion 13 Notes:				
M1:	Begins proof by applying a full method of $\int y \frac{dx}{dt} \{dt\}$ to give $\int (5\sin 2t) \left(\text{their } \frac{dx}{dt} \right) \{dt\}.$				
A1:	$\int (5\sin 2t)(-6\sin t) \{dt\}.$				
M1:	Applies $\sin 2t = 2\sin t \cos t$ to achieve an integral of the form $\pm K \int \sin^2 t \cos t \{dt\}; K \neq 0$,				
	J which may be un-simplified or simplified				
M1:	Applies parametric integration to achieve an integral of the form $\pm K \int \sin^2 t \cos t \{dt\}; K \neq 0$,				
	followed by a correct integration strategy of "reverse chain rule" or "integration by substitution"				
	to give $\sin^2 t \cos t \{dt\}$ in the form $\pm \lambda \sin^3 t \cdot \lambda \neq 0$ or $\pm \lambda u^3 \cdot \lambda \neq 0$ where $u = \sin t$				
	$\int \sin i \cos i \sqrt{\alpha} i \int \sin i \cos i \sqrt{\alpha} i \int \sin i \sqrt{\alpha} \sin i \sqrt{\alpha} + 0 \text{or } 1 = \lambda \sin i$				
A1:	$\sin^2 t \cos t \rightarrow \frac{1}{3} \sin^3 t$ or $\sin^2 t \cos t \rightarrow \frac{1}{3} u^3$ where $u = \sin t$				
M1:	Applies limits of $t = \frac{\pi}{3}$ and $t = \frac{\pi}{2}$ to an integrated expression of the form $\pm \alpha \sin^3 t$; $\alpha \neq 0$ and				
	subtracts either way round				
A1*:	Correctly uses their limits to show that the area of <i>R</i> is $20 - \frac{15}{2}\sqrt{3}$				

Quest	n Scheme		AOs	
14	$y = kx^2$ and $y = \sqrt{kx}$, $x \ge 0$			
	E.g. • $kx^2 = \sqrt{kx} \implies k^2x^4 = kx \implies k^2x^4 - kx = 0 \implies kx(kx^3 - 1) = 0$ $\{\implies kx = 0 \implies x = 0\} \implies kx^3 - 1 = 0 \implies x^3 = \frac{1}{r} \implies x = \dots$		21	
	• $kx^2 = \sqrt{kx} \implies k^2 x^4 = kx \implies kx^3 = 1 \implies x = \dots$ • $kx^2 = \sqrt{kx} \implies k^{\frac{1}{2}} x^{\frac{3}{2}} = 1 \implies x^{\frac{3}{2}} = k^{-\frac{1}{2}} \implies x = \dots$		2.1	
	$x = \sqrt[3]{\frac{1}{k}}$ or $x = k^{-\frac{1}{3}}$	A1	1.1b	
	$Area(P) = \int_{k}^{k^{-\frac{1}{3}}} (\sqrt{kx} - kr^{2}) dr = \begin{bmatrix} \sqrt{kx^{\frac{3}{2}}} & 1 \\ \sqrt{kx^{\frac{3}{2}}} & 1 \\ kr^{3} \end{bmatrix}^{k^{-\frac{1}{3}}}$	M1	1.1b	
	Area(R) = $\int_{0}^{\infty} \left(\sqrt{kx - kx^{2}}\right) dx = \left[\frac{3}{\left(\frac{3}{2}\right)^{2}} - \frac{3}{3}kx^{2}\right]_{0}$		1.1b	
	$= \left(\frac{2}{3}\sqrt{k}\frac{1}{\sqrt{k}} - \frac{k}{3}\frac{1}{k}\right) - (0-0) = \frac{2}{3} - \frac{1}{3} = \frac{1}{3} *$		2.1	
	(5 marks)			
Questi	on 14 Notes:			
M1:	Equates the two curves and solves $kx^2 = \sqrt{kx}$ to give $x =$			
A1:	$x = \sqrt[3]{\frac{1}{k}}$ or $x = k^{-\frac{1}{3}}$			
M1:	Evidence of attempting $\int (\sqrt{kx} - kx^2) dx$ or $(\int \sqrt{kx} dx - \int kx^2 dx)$ with at least one of either			
	$\sqrt{kx} \rightarrow \pm \alpha x^{\frac{3}{2}}$ or $kx^2 \rightarrow \pm \beta x^3$; $\alpha, \beta \neq 0$. You can ignore the limits for this mark			
B1:	At least one of either $\sqrt{kx} \rightarrow \frac{\sqrt{kx^2}}{\left(\frac{3}{2}\right)}$ or $kx^2 \rightarrow \frac{1}{3}kx^3$, which can be un-simplified or simplified			
A1*:	Correct use of integration and limits to show that, for all values of k, the area of R is $\frac{1}{3}$			

Quest	on Scheme	Marks	AOs		
15	$a_{n+1} = k - \frac{3k}{a_n}, \ n \in \mathbb{Z}^+; \ k \text{ is a constant}$				
	Sequence a_1, a_2, a_3, \dots where $a_2 = 2$ is periodic of order 3				
(a)	(a) $a_3 = k - \frac{3k}{2} = -\frac{1}{2}k;$ $a_4 = k - \frac{3k}{(-\frac{1}{2}k)} = k + 6$		1.1b		
	$\{a_5 = a_2 \implies \} \ a_5 = k - \frac{3k}{k+6} = 2$		3.1a		
	$\Rightarrow k(k+6) - 3k = 2(k+6) \Rightarrow k^2 + 6k - 3k = 2k + 12$ $\Rightarrow k^2 + k - 12 = 0 *$	A1*	2.1		
		(3)			
(b) $(k+4)(k-3) = 0 \implies k = -4, 3$		M1	3.1a		
	$k = 5, \ \{a_2 = 2, \} \ a_3 = -\frac{1}{2}, \ a_4 = 9$ $\{k = -4; \ \{a_2 = 2, \} \ a_3 = 2 \ \{\Rightarrow a_4 = 2, \ a_1 = 2; \text{ so reject as } a_1 = a_2\} \}$	Al	1.1b		
Note: $k = 3; a_1 = 9, a_2 = 2, a_3 = -\frac{3}{2}, a_4 = 9$, etc.					
$\sum_{r=1}^{121} a_r = 40\left(2 - \frac{3}{2} + 9\right) + 9$		M1	2.2a		
	= 40(9.5) + 9 = 380 + 9 = 389		1.1b		
		(4)			
		(7 1	narks)		
Questi	on 15 Notes:				
(a) M1•	Uses $a = 2$ to find both a in terms of k (which can be un-simplified or simplified	(be			
1711.	and a_1 in terms of k (which can be un-simplified or simplified)				
M1:	Shows understanding that the sequence is periodic of order 3 by applying complete strategy of				
	finding a_5 in terms of k and setting the result equal to 2 (which is the same as a_2)				
A1*:	Shows that $k^2 + k - 12 = 0$ with no errors in their working				
(b)					
M1:	Complete process of finding and using $k = 3$ to find <i>the values</i> of either a_3 and a_4 or a_1 and a_3				
A1:	Uses $k = 3$ to find $a_3 = -\frac{3}{2}$ and $a_4 = 9$ or $a_1 = 9$ and $a_3 = -\frac{3}{2}$				
M1:	Deduces $\sum_{r=1}^{121} a_r = 40(2 + "-1.5" + "9") + "9"$				
A1:	389				