Mark Scheme

Mock Paper (set1)

Pearson Edexcel GCE A Level Mathematics
Pure Mathematics 2 (9MA0/02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 100
2. These mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given

4. All M marks are follow through.

A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Where a candidate has made multiple responses and indicates which response they wish to submit, examiners should mark this response. If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.
7. Ignore wrong working or incorrect statements following a correct answer.
8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

$\mathbf{1}$	$\cos \theta-\sin \left(\frac{1}{2} \theta\right)+2 \tan \theta=\frac{11}{10}$		
(a)	$1-\frac{1}{2} \theta^{2}-\frac{1}{2} \theta+2 \theta \approx \frac{11}{10}$	M 1	1.2
	$\Rightarrow \frac{1}{2} \theta^{2}-\frac{3}{2} \theta+\frac{1}{10} \approx 0 \Rightarrow 5 \theta^{2}-15 \theta+1 \approx 0 *$	A 1	1.1 b
		$\mathrm{~A} 1^{*}$	2.1
(b)	$\theta=0.068$ is valid because θ is small $\theta=2.932$ is not valid because θ is large	B 1	2.3
		$\mathbf{(1)}$	
	$\mathbf{(4) ~ m a r k s)}$		

Question 1 Notes:

(a)

M1: At least two of either $\cos \theta \approx 1-\frac{1}{2} \theta^{2}, \sin \left(\frac{1}{2} \theta\right) \approx \frac{1}{2} \theta$ or $\tan \theta \approx \theta$ substituted into the given equation
A1: Substitutes $\cos \theta \approx 1-\frac{1}{2} \theta^{2}, \sin \left(\frac{1}{2} \theta\right) \approx \frac{1}{2} \theta$ and $\tan \theta \approx \theta$ into the given equation to obtain a correct (un-simplified) approximation or equation. E.g. $1-\frac{1}{2} \theta^{2}-\frac{1}{2} \theta+2 \theta \approx \frac{11}{10}$ or $=\frac{11}{10}$
A1*: Obtains $5 \theta^{2}-15 \theta+1 \approx 0$ (condone $5 \theta^{2}-15 \theta+1=0$) with no errors seen in their working
(b)

B1: States $\theta=0.068$ is valid because θ is small; and $\theta=2.932$ is not valid because θ is large
(b)

Alt 1 LHS $=\cos \theta-\sin \left(\frac{1}{2} \theta\right)+2 \tan \theta$
B1: States $\theta=0.068$ is valid and $\theta=2.932$ is not valid based on testing these two values in the original equation
Note: $\theta=0.068 \Rightarrow$ LHS $=1.0999 \ldots$ \& $\theta=2.932 \Rightarrow$ LHS $=-2.3980 \ldots$
Note: $\theta=0.068218 \ldots \Rightarrow$ LHS $=1.1002 \ldots$ \& $\theta=2.931782 \ldots \Rightarrow$ LHS $=-2.3984 \ldots$

Question	Scheme	Marks	AOs
2	$x=6 t+1, y=5-\frac{4}{3 t}, t \neq 0$		
	$\left\{t=\frac{x-1}{6} \Rightarrow\right\} y=5-\frac{4}{(x-1)}$	M1	1.1b
	$3\left(\frac{x-1}{6}\right)$	A1	1.1b
	$\begin{aligned} & \Rightarrow y=5-\frac{4}{\left(\frac{x-1}{2}\right)} \Rightarrow y=5-\frac{8}{x-1} \Rightarrow y=\frac{5(x-1)-8}{x-1} \\ & \Rightarrow y=\frac{5 x-13}{x-1}, x \neq 1 \quad\{a=5, b=-13, k=1\} \end{aligned}$	A1	2.1
		(3)	
Alt 1	$\left\{\begin{array}{l}4 \\ 3(5-\nu))^{\prime}\end{array}\right\} x=6\left(\frac{4}{3(5-\nu)}\right.$	M1	1.1b
	$\left\{t=\frac{4}{3(5-y)} \Rightarrow\right\}^{x=6}\left(\frac{4}{3(5-y)}\right)+1$	A1	1.1b
	$\begin{aligned} & \Rightarrow x=\frac{8}{(5-y)}+1 \Rightarrow(x-1)(5-y)=8 \Rightarrow 5 x-x y-5+y=8 \\ & \Rightarrow 5 x-5-8=x y-y \Rightarrow 5 x-13=y(x-1) \Rightarrow y=\frac{5 x-13}{x-1}, x \neq 1 \end{aligned}$	A1	2.1
		(3)	
		(3 marks)	
Question 2 Notes:			
M1: A A1: A A1: U	An attempt to eliminate t Achieves a correct equation in x and y only which can be un-simplified or simplified Uses correct algebra to show $y=\frac{5 x-13}{x-1}, x \neq 1$		

Question	Scheme	Marks	AOs
3 (a)	$\left\{y=x^{2}+k x+14-8(x-5)^{-1} \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+k+8(x-5)^{-2}$	M1	1.1b
		A1	1.1b
	$\left\{\right.$ At $\left.x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=2(3)+k+\frac{8}{(3-5)^{2}}=0$	dM1	1.1b
	$\Rightarrow 6+k+\frac{8}{4}=0 \Rightarrow 6+k+2=0 \Rightarrow k=-8 *$	A1*	2.1
		(4)	
(b)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2-16(x-5)^{-2}=2-\frac{16}{(x-5)^{3}}$		
	When $x=3, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2-\frac{16}{(3-5)^{3}}$	M1	1.1b
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4>0 \Rightarrow\{$ local $\}$ minimum $\{$ stationary point at $P\}$	A1	2.1
		(2)	
(b) Alt 1		M1	1.1b
		A1	2.1
		(2)	
(c)	Criteria 1 (Accept any one of the two following points) - At $x=7, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2-\frac{16}{(7-5)^{3}}=0$ - $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2-\frac{16}{(x-5)^{3}}=0 \Rightarrow(x-5)^{3}=8 \Rightarrow x=2+5 \Rightarrow x=7$		
	Criteria 2 (Accept any one of the two following points) - At $x=6.9, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-0.33 \ldots<0$ and at $x=7.1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=0.27 \ldots>0$ - $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{48}{(x-5)^{3}}$ and at $x=7, \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}\left\{=\frac{48}{(7-5)^{3}}=6\right\} \neq 0$		
	At least one of Criteria 1 or Criteria 2	M1	2.1
	Both Criteria 1 and Criteria 2 (with correct calculations) and concludes the curve has a \{non-stationary\} point of inflection at $x=7$	A1	2.4
		(2)	
(d)	Sign change method is not valid because either - the curve is not defined at $x=5$ - the curve is not continuous over the interval $(4.5,5.5)$	B1	2.4
		(1)	
(9 marks)			

Question 3 Notes:

(a)

M1: At least one of either $x^{2} \rightarrow \pm A x$ or $k x \rightarrow k$ or $-\frac{8}{(x-5)} \rightarrow \pm B(x-5)^{-2} ; A, B \neq 0$
A1: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+k+8(x-5)^{-2}$, which may be un-simplified or simplified
dM1 dependent on the previous M mark
Complete strategy of substituting $x=3$ into their equation for $\frac{d y}{d x}$ and setting $\frac{d y}{d x}$ equal to 0
A1*: Correctly shows $k=-8$ with no errors in their working
(b)

M1: Evidence of substituting $x=3$ into an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ which is in the form $\pm \alpha \pm \beta(x-5)^{-3}$; $\alpha, \beta \neq 0$

A1: For a correct calculation, a valid reason and a correct conclusion
(b)

Alt 1
M1: Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which is in the form $\pm \alpha x-8 \pm \beta(x-5)^{-2} ; \alpha, \beta \neq 0$ and finds values for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ either side of $x=3$

A1: For correct calculations, a valid reason and a correct conclusion
(c)

M1: See scheme
A1: See scheme
(d)

B1: States that the sign change method is not valid together with an acceptable reason as indicated in the scheme

Question	Scheme	Marks	AOs
4	$\mathrm{f}(x)=x^{3}-6 x^{2}+7 x+2, \quad x \in \mathbb{R}$		
(a)	$\mathrm{f}(x)=(x-2)\left(x^{2}-4 x-1\right)$	M1	2.2a
		A1	1.1b
		(2)	
$\begin{gathered} \text { (b) } \\ \text { (i), (ii) } \end{gathered}$	$\left\{\right.$ Note: $(x-2)=0 \Rightarrow x_{Q}=2$ is known and at $\left.P, R,\left(x^{2}-4 x-1\right)=0\right\}$		
	$(x-2)^{2}-4-1=0 \quad \text { or } \quad x=\frac{4 \pm \sqrt{16-4(1)(-1)}}{2(1)}$	M1	1.1b
	$\Rightarrow x_{P}=2-\sqrt{5}$ and $x_{R}=2+\sqrt{5}$	A1	1.1b
		(2)	
(c)	$\sin ^{3} \theta-6 \sin ^{2} \theta+7 \sin \theta+2=0, \quad-\pi \leqslant \theta \leqslant 12 \pi$,		
	Deduces that there are 14 real solutions for $-\pi \leqslant \theta \leqslant 12 \pi$	B1	2.2a
	Correct justification. E.g. Both - $\sin \theta=2$ and $\sin \theta=2+\sqrt{5}=4.236 \ldots$ have no real solutions and either - $\sin \theta=2-\sqrt{5}=-0.236 \ldots$ has 2 real solutions for each interval of 2π. So there are 12 real solutions in the interval $[0,12 \pi]$ and 2 real solutions in the interval $[-\pi, 0]$ - $\sin \theta=2-\sqrt{5}=-0.236 \ldots$ has 2 real solutions for each interval of 2π. So there are 12 real solutions in the interval $[-\pi, 11 \pi]$ and 2 real solutions in the interval $[11 \pi, 12 \pi]$ - $\sin \theta=2-\sqrt{5}=-0.236 \ldots$ has 2 real solutions for each interval of 2π. So there are 14 real solutions in the interval $[-2 \pi, 12 \pi]$ and no real solutions in the interval $[-2 \pi,-\pi]$ - $\sin \theta=2-\sqrt{5}=-0.236 \ldots$ has two real solutions in each of $[-\pi, 0],[\pi, 2 \pi],[3 \pi, 4 \pi],[5 \pi, 6 \pi],[7 \pi, 8 \pi],[9 \pi, 10 \pi]$ and $[11 \pi, 12 \pi]$	B1ft	2.4
		(2)	
(6 marks)			

Question 4 Notes:

(a)

M1: Deduces $(x-2)$ is a factor of $\mathrm{f}(x)$ and attempts to find a quadratic factor of $\mathrm{f}(x)$ by either equating coefficients or by algebraic long division
A1: $\quad(x-2)\left(x^{2}-4 x-1\right)$
(b)
(i), (ii)

M1: Correct method (i.e. completing the square or applying the quadratic formula) to solve a 3 TQ .
Note: M1 can be given here for at least one of either $2-\sqrt{5}$ or $2+\sqrt{5}$ written down in part (b).
A1: \quad Finds and identifies the correct exact x coordinate of P and the correct exact x coordinate of R
(c)

B1: \quad Correct deduction of 14 (real solutions)
B1:
See scheme

6

$$
\left\{(2+k x)^{-4}=2^{-4}\left(1+\frac{k x}{2}\right)^{-4}=\frac{1}{16}\left(1+(-4)\left(\frac{k x}{2}\right)+\frac{(-4)(-5)}{2!}\left(\frac{k x}{2}\right)^{2}+\ldots\right)\right\}
$$

(a)

For the x^{2} term: $\left(\frac{1}{16}\right) \frac{(-4)(-5)}{2!}\left(\frac{k}{2}\right)^{2}\left\{=\frac{5}{32} k^{2}\right\}$

M1	1.1 b
A1	1.1 b

$\frac{1}{16} \frac{(-4)(-5)}{2!}\left(\frac{k}{2}\right)^{2}=\frac{125}{32} \Rightarrow \frac{5}{32} k^{2}=\frac{125}{32} \Rightarrow k^{2}=25 \Rightarrow k=\ldots \Rightarrow A=\ldots \quad \mathrm{dM} 1 \quad 3.1 \mathrm{a}$

$\left\{A=-\frac{4}{32} k \Rightarrow\right\}=-\frac{4}{32}(5)$	M1	2.2 a
$A=-\frac{5}{8}$ or -0.625	A 1	1.1 b

(b) $\quad \mathrm{f}(x)$ is valid when $\left|\frac{k x}{2}\right|<1 \Rightarrow\left|\frac{5 x}{2}\right|<1 \Rightarrow|x|<\frac{2}{5}$
E.g.

- As $x=\frac{1}{10}$ lies in the interval $|x|<\frac{2}{5}$, the binomial expansion is valid
- As $\left|\left(\frac{5}{2}\right)\left(\frac{1}{10}\right)\right|=\frac{1}{4}<1$, the binomial expansion is valid
(5)
Bl- 2.3
(1)
(6 marks)

Question 6 Notes:

(a)

M1: For either $\frac{(-4)(-5)}{2!}$ or $\left(\frac{k}{2}\right)^{2}$ or $\left(\frac{k x}{2}\right)^{2}$ or $\frac{(-4)(-5)}{2}$ or 10 as part of their x^{2} coefficient
A1: \quad For $\left(\frac{1}{16}\right) \frac{(-4)(-5)}{2!}\left(\frac{k}{2}\right)^{2}$ or $\frac{5}{32} k^{2}$ or equivalent as part of their x^{2} coefficient
dM1: dependent on the previous M mark
A complete strategy to find a value for k and use their k to find a value for A
M1: Deduces and applies $A=-\frac{4}{32}($ their $k)$ or $A=-\frac{1}{8}($ their $k)$
A1: $\quad A=-\frac{5}{8}$ or -0.625
(b)

B1ft: See scheme
Note: Allow follow through for applying either $|x|<\frac{2}{\text { their } k}$ or $\left|\left(\frac{\text { their } k}{2}\right)\left(\frac{1}{10}\right)\right|$

Question 7 Notes:

(a)

M1: Evaluates both $\mathrm{f}(-1.5)$ and $\mathrm{f}(-1)$
A1: $\quad \mathrm{f}(-1.5)=\operatorname{awrt} 3$ or $\mathrm{f}(-1.5)=2$ (truncated) and $\mathrm{f}(-1)=\operatorname{awrt}-0.4$ or $\mathrm{f}(-1)=-0.3$ (truncated) and a correct conclusion
(b)(i)

B1: See scheme
(b)(ii)

B1: \quad Deduces (e.g. using further iterations) that $\alpha=-1.06$ accurate to 2 dp
(c)

M1: Attempts $x_{2}=x_{1}-\frac{\mathrm{f}\left(x_{1}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)} ; x_{1}=3$; which can be evidenced by $3-\left(\frac{-1.4189}{-8.3078}\right)$
A1: $\quad 2.83$
(d)

M1: See scheme
A1: See scheme

Question	Scheme	Marks	AOs
8 (a)	Deduces that the radius of the circle is 6	B1	2.2a
	$(x-9)^{2}+(y+6)^{2}=36$	M1	1.1b
		A1	1.1b
		(3)	
(b)	Let d be the distance from $(9,-6)$ to l		
	$d^{2}+4^{2}=6^{2} \Rightarrow d^{2}=\ldots$	M1	3.1a
	$d=\sqrt{20}$ or $2 \sqrt{5}$	A1	1.1b
	$\{l:\} \quad y=-6+2 \sqrt{5}, y=-6-2 \sqrt{5}$	dM1	2.2a
		A1	1.1b
		(4)	
Alt 1	$\begin{gathered} \text { Either } \quad\left\{x=9+\frac{8}{2}=13 \Rightarrow\right\}(13-9)^{2}+(y+6)^{2}=36 \Rightarrow y=\ldots \\ \text { or } \quad\left\{x=9-\frac{8}{2}=5 \Rightarrow\right\}(5-9)^{2}+(y+6)^{2}=36 \Rightarrow y=\ldots \end{gathered}$	M1	3.1a
	$\{l:\} \quad y=-6+2 \sqrt{5}$	A1	1.1b
	\{l: \} $y=-6-2 \sqrt{5}$	dM1	2.2a
	$\{:\} \quad y=-6-2 \sqrt{5}$	A1	1.1b
		(4)	
(7 marks)			

Question 8 Notes:

(a)

B1: Deduces that the radius of the circle is 6 . This can be achieved by either

- Stating that $r=6$ or radius $=6$ or $r^{2}=36$
- Writing $(x \pm \alpha)^{2}+(y \pm \beta)^{2}=36$ or $6^{2} ; \alpha, \beta \neq 0$

M1
$(x \pm 9)^{2}+(y \pm 6)^{2}=k ; k>0$
A1: $\quad(x-9)^{2}+(y+6)^{2}=36$ or $(x-9)^{2}+(y+6)^{2}=6^{2}$ o.e.
(b)

M1: Uses the circle property "the perpendicular from the centre to a chord bisects the chord" in a complete strategy of writing an equation of the form $d^{2}+\left(\frac{8}{2}\right)^{2}=(\text { their } r)^{2}$ and progresses as far as $d^{2}=\ldots$

A1: $\quad d=\sqrt{20}$ or $2 \sqrt{5}$
dM1: depends on the previous M mark
Deduces the horizontal line l is d units from the line $y=-6$ and so writes both

- $y=-6+($ their $d)$ and $y=-6-($ their $d)$

A1: For either:

- $y=-6+2 \sqrt{5}$ and $y=-6-2 \sqrt{5}$
- $y=-6+\sqrt{20}$ and $y=-6-\sqrt{20}$
(b)

Alt 1
M1:
Uses the circle property "the perpendicular from the centre to a chord bisects the chord" in a complete strategy of substituting either $x=13$ or $x=5$ into their circle equation and progresses as far as $y=\ldots$

A1: For $y=-6+2 \sqrt{5}$ or $y=-6+\sqrt{20}$
dM1:
depends on the previous M mark
Finds y in the form $y=-6+($ their $d)$, deduces the other horizontal line l is d units below the line $y=-6$ and so writes $y=-6-($ their $d)$
A1: For either:

- $y=-6+2 \sqrt{5}$ and $y=-6-2 \sqrt{5}$
- $y=-6+\sqrt{20}$ and $y=-6-\sqrt{20}$

Question	Scheme	Marks	AOs
9 (a)	$\left\{y=a b^{t} \Rightarrow\right\} \log _{10} y=\log _{10}\left(a b^{t}\right) \Rightarrow \log _{10} y=\log _{10} a+\log _{10} b^{t}$	M1	1.1b
	$\Rightarrow \log _{10} y=t \log _{10} b+\log _{10} a,\left\{\right.$ where $\left.c=\log _{10} a\right\}$	A1	2.1
		(2)	
(b)	$c=\log _{10} a=2.23, \quad m=\log _{10} b=-0.076$		
	$\Rightarrow a=10^{2.23}\{=169.8243652 \ldots\} \quad \Rightarrow b=10^{-0.076}$ \{=0.8394599865 $\left.\ldots\right\}$	M1	1.1 b
	$a=170$ (2 sf) and $b=0.84$ (2 sf)	A1	1.1b
		(2)	
(c)	$y=(170)(0.84)^{t}$		
	(i) $\{a=" 170 " \Rightarrow\}$ e.g. - " 170 " milligrams of antibiotic were initially given to the patient - the initial dose of the antibiotic is estimated as " 170 " milligrams	B1ft	3.4
	(ii) $\{b=" 0.84 " \Rightarrow\}$ e.g. after the antibiotic is first given the amount of antibiotic in the patient's bloodstream reduces by approximately " 16% " per hour	B1ft	3.4
		(2)	
(d)	$\begin{aligned} & 30=(170)(0.84)^{t} \Rightarrow \frac{30}{170}=(0.84)^{t} \Rightarrow \ln \left(\frac{30}{170}\right)=\ln (0.84)^{t} \\ & \Rightarrow \ln \left(\frac{30}{170}\right)=t \ln (0.84) \Rightarrow t=\frac{\ln \left(\frac{30}{170}\right)}{\ln (0.84)} \end{aligned}$	M1	3.4
	$\{t=9.948766031 \ldots \Rightarrow\} t=9.9$ (hours) $(1 \mathrm{dp})$	A1	1.1b
		(2)	
(d) Alt 1	$\log _{10} 30=-0.076 t+2.23 \Rightarrow t=\frac{2.23-\log _{10} 30}{0.076}$	M1	3.4
	$\{t=9.90629928 \ldots \Rightarrow t=9.9$ (hours) (1 dp)	A1	1.1b
		(2)	
(e)	e.g. As $t=9.9$ is outside of the experimental data $0 \leqslant t \leqslant 5$, we do not have enough evidence to deduce that the model $y=(170)(0.84)^{t}$ is still valid. So, the estimate in part (d) should be treated with caution.	B1	3.5b
		(1)	
(9 marks)			

Question 9 Notes:

(a)

M1: \quad Starting from $y=a b^{t}$, takes logs of both sides and uses the addition law of logarithms to progress as far as $\log _{10} y=\log _{10} a+\log _{10} b^{t}$

A1: \quad Starting from $y=a b^{t}$, correctly shows that $\log _{10} y=t \log _{10} b+\log _{10} a$ with no errors seen
Note: M1 (special case) can be given in part (a) for stating $c=\log _{10} a$
(b)

M1: For either $a=10^{2.23}$ or $b=10^{-0.076}$
A1: $\quad a=170$ and $b=0.84$
(c)(i)

B1ft: Correct practical interpretation of their a, where their $a>0$
(c)(ii)

B1ft: Correct practical interpretation of their b, where their $b: 0<b<1$
(d)

M1: Substitutes $y=2.5$ into the model $y=($ their $a)(\text { their } b)^{t}$ and rearranges their equation to give $t=\ldots$
A1: $\quad 9.9$ (hours) (1 dp)
(d)

Alt 1
M1: \quad Substitutes $y=30, m=-0.076$ and $c=2.23$ into the model $\log _{10} y=m t+c$ and rearranges their equation to give $t=\ldots$

A1: $\quad 9.9$ (hours) (1 dp)
(e)

B1: E.g. Estimate should be treated with caution because $t=9.9$ is outside the range of times, i.e. $0 \leqslant t \leqslant 5$, for which the model $y=(170)(0.84)^{t}$ is valid

Question	Scheme	Marks	AOs
10 (a)	$\frac{\mathrm{d} A}{\mathrm{~d} t} \propto \sqrt{A} \Rightarrow \frac{\mathrm{~d} A}{\mathrm{~d} t}=k \sqrt{A} \quad$ or $\frac{\mathrm{d} A}{\mathrm{~d} t}=k A^{\frac{1}{2}}$	B1	3.1b
	$\int \frac{1}{A^{\frac{1}{2}}} \mathrm{~d} A=\int k \mathrm{~d} t$	M1	1.1b
	$\left\{\int A^{-\frac{1}{2}} \mathrm{~d} A=\int k \mathrm{~d} t \Rightarrow\right\} \frac{A^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}=k t\{+c\}$ or $2 A^{\frac{1}{2}}=k t\{+c\}$	A1	1.1b
	$\{t=0, A=9 \Rightarrow 2 \sqrt{9}=k(0)+c$	M1	3.4
	$\begin{aligned} & \Rightarrow c=6 \Rightarrow 2 A^{\frac{1}{2}}=k t+6 \\ & \{t=6, A=56.25 \Rightarrow\} 2 \sqrt{56.25}=k(6)+6 \end{aligned}$	dM1	1.1b
	$\begin{aligned} & \Rightarrow 15=6 k+6 \Rightarrow k=\frac{9}{6} \Rightarrow k=\frac{3}{2} \\ & \Rightarrow 2 A^{\frac{1}{2}}=\frac{3}{2} t+6 \Rightarrow A^{\frac{1}{2}}=\frac{3}{4} t+3 \Rightarrow A=\left(\frac{3}{4} t+3\right)^{2} * \end{aligned}$	A1*	2.1
		(6)	
$\begin{gathered} \text { (b) } \\ \text { (i), (ii) } \end{gathered}$	Either $\text { - } \begin{array}{rl} t & =12, A=\left(\frac{3}{4}(12)+3\right)^{2}=144\{\approx 143.78\} \\ t & t=18, A=272.25\{\approx 271.19\} \\ t & t=24, A=441\{>334.81\} \\ \{t=30, A=650.25\{>337.33\}\} \end{array}$ or $\text { - } \begin{aligned} & A=143.78 \Rightarrow 143.78=\left(\frac{3}{4} t+3\right)^{2} \Rightarrow t=11.98777 \ldots\{\approx 12\} \\ & A=271.19 \Rightarrow t=17.95713 \ldots\{\approx 18\} \\ & A=334.81 \Rightarrow t=20.39709 \ldots\{<24\} \\ &\{A=337.33 \Rightarrow t=20.48873 \ldots\{<30\}\} \end{aligned}$	M1	3.4
	Biologist's model works well for $t=12$ and $t=18$ but appears to give an overestimate for A (or does not work well) when $t=24$ and $t=30$	A1	3.5a
	E.g. - The biologist's model appears to break down for large values of t. This may be because the biologist's model predicts values for A which are greater than the total surface area of the piece of bread used in the experiment. - The biologist's results indicate an upper limit for A, but the biologist's model does not give an upper limit for A.	B1	3.2a
		(3)	
(9 marks)			

Question 10 Notes:

(a)

B1: Translates the biologist's model regarding proportionality into a differential equation, which involves a constant of proportionality. E.g. $\frac{\mathrm{d} A}{\mathrm{~d} t} \propto \sqrt{A} \Rightarrow \frac{\mathrm{~d} A}{\mathrm{~d} t}=k \sqrt{A}$

M1: \quad Correct method of separating the variables A and t in their differential equation
A1: $\quad \frac{A^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}=k t \quad$ or $\quad 2 A^{\frac{1}{2}}=k t$, with or without a constant of integration
M1: \quad Some evidence of applying the measurements $t=0, A=9$ or $A=9.00$ to a changed equation containing a constant of integration. e.g. c
dM1: dependent on the previous M mark
Applies $t=6, A=56.25$ and their value of c to their changed equation which contains their constant of proportionality
A1*: Shows that $A=\left(\frac{3}{4} t+3\right)^{2}$, with no errors in their working
(b)
(i), (ii)

M1: Uses the model found in part (a) to find

- either values for A when $t=12, t=18$ and $t=24$
- or values for t when $A=143.78, A=271.19$ and $A=334.81$

A1: \quad - Either $t=12 \Rightarrow A=144, t=18 \Rightarrow A=\operatorname{awrt} 272$ and $t=24 \Rightarrow A=441$

- or $A=143.78 \Rightarrow t=$ awrt $12, A=271.19 \Rightarrow t=\operatorname{awrt} 18$ and $A=334.81 \Rightarrow t=\operatorname{awrt} 20$ and evaluates (see scheme) the outcomes of the model

B1: See scheme

Question	Scheme	Marks	AOs
11	$\mathrm{f}(x)=\frac{\sin 2 x}{-3+\cos 2 x}, \quad 0 \leqslant x \leqslant \pi$		
(a)	$\left\{\begin{array}{rlrl}u & =\sin 2 x & & v \\ \text { d } u & =-3+\cos 2 x \\ \frac{\mathrm{~d} x}{\mathrm{~d} x} & =2 \cos 2 x & & \frac{\mathrm{~d} v}{\mathrm{~d} x}=-2 \sin 2 x\end{array}\right\}$		
	$\mathrm{f}^{\prime}(x)=(-3+\cos 2 x)(2 \cos 2 x)-(\sin 2 x)(-2 \sin 2 x)$	M1	2.1
	$(-3+\cos 2 x)^{2}$	A1	1.1b
	$\mathrm{f}^{\prime}(x)=0 \Rightarrow(-3+\cos 2 x)(2 \cos 2 x)-(\sin 2 x)(-2 \sin 2 x)=0$	M1	1.1b
	$\begin{gathered} -6 \cos 2 x+2 \cos ^{2} 2 x+2 \sin ^{2} 2 x=0 \Rightarrow-6 \cos 2 x+2=0 \\ \Rightarrow \cos 2 x=\frac{1}{3}^{*} \end{gathered}$	A1*	2.1
		(4)	
(b)	Maximum turning point for (i) $y=\mathrm{f}(3 x)+5$, (ii) $y=-\mathrm{f}\left(\frac{1}{4} x\right)$		
	$\left\{\cos 2 x=\frac{1}{3} \Rightarrow \text { Principal Value }=1.2309593 \ldots\right\}$		
	(i) For either - $\left\{\cos 6 x=\frac{1}{3}\left(2 \mathrm{nd} \mathrm{sol}^{\mathrm{n}}\right) \Rightarrow\right\} x=\frac{2 \pi-1.2309593 \ldots}{6}$ - $\left\{\cos 2 x=\frac{1}{3}\left(2 \mathrm{nd} \mathrm{sol}^{\mathrm{n}}\right) \Rightarrow\right\} 3 x=\frac{2 \pi-1.2309593 \ldots}{2} \Rightarrow x=\ldots$	M1	3.1a
	$\Rightarrow x=0.842037 \ldots=0.84(2 \mathrm{dp})$	A1	1.1b
	(ii) For either - $\left\{\cos \left(\frac{1}{2} x\right)=\frac{1}{3}\left(1\right.\right.$ st sol $\left.\left.^{\mathrm{n}}\right) \Rightarrow\right\} \quad x=2(1.2309593 \ldots)$ - $\left\{\cos 2 x=\frac{1}{3}\left(2 \mathrm{nd} \mathrm{sol}^{\mathrm{n}}\right) \Rightarrow\right\} \frac{1}{4} x=\frac{1.2309593 \ldots}{2} \Rightarrow x=\ldots$	M1	3.1a
	$\Rightarrow x=2.461918 \ldots=2.46$ (2 dp)	A1	1.1b
		(4)	
(8 marks)			

Question 11 Notes:
(a)

M1:
Attempts to differentiate by using the quotient rule with $u=\sin 2 x$ and $v=-3+\cos 2 x$ or attempts to differentiate by using the product rule with $u=\sin 2 x$ and $v=(-3+\cos 2 x)^{-1}$

A1: \quad Correct $\mathrm{f}^{\prime}(x)$, which can be un-simplified or simplified
M1: \quad Sets $\mathrm{f}^{\prime}(x)=0$ and proceeds with their working to set the numerator of $\mathrm{f}^{\prime}(x)$ equal to 0
A1*: Shows $\cos 2 x=\frac{1}{3}$ with no errors seen in their working
(b)(i)

M1: - Attempts to find the second solution for $\cos 6 x=\frac{1}{3}$
E.g. $x=\frac{2 \pi-1.2309593 \ldots}{6}=\frac{5.052225 \ldots}{6}$

- Attempts to find the second solution of $\cos 2 x=\frac{1}{3}$ and proceeds to divide their result by 3
E.g. $3 x=\frac{2 \pi-1.2309593 \ldots}{2} \Rightarrow x=\frac{2.526112 \ldots}{3}$

A1: $\quad 0.84(2 \mathrm{dp})$ or anything that rounds to 0.84
(b)(ii)

M1:

- Attempts to find the first solution for $\cos \left(\frac{1}{2} x\right)=\frac{1}{3}$
E.g. $\quad x=2(1.2309593 . .$.
- Attempts to find the first solution of $\cos 2 x=\frac{1}{3}$ and proceeds to multiply the result by 4
E.g. $\frac{1}{4} x=\frac{1.2309593 \ldots}{2} \Rightarrow x=4(0.615479 \ldots)$

A1:
$2.46(2 \mathrm{dp})$ or anything that rounds to 2.46

Question	Scheme	Marks	AOs
12 (a)	Total mass $=\frac{4500\left(1-(0.98)^{23}\right)}{1-0.98}$ or $\frac{4500\left((0.98)^{23}-1\right)}{0.98-1}$	M1	3.1 b
	$=83621.86152 \ldots=83600$ (tonnes) $(3 \mathrm{sf})$	A1	1.1b
		(2)	
(b)	Expected mass in the year $2040=4500(0.98)^{23-1}$	M1	3.4
	$=2885.268132 \ldots=2890$ (tonnes) $(3 \mathrm{sf})$	A1	1.1b
		(2)	
(c)	Total cost $=800(1500(23))+600(83621.86152 \ldots-1500(23))$	M1	3.1b
		M1	1.1b
	$\begin{aligned} & =800(34500)+600(49121.86152 \ldots) \\ & =27600000+29473116.91 \\ & =57073116.91 \end{aligned}$		
	$\Rightarrow x=(\mathfrak{£}) 57.1$ (million) (3 sf)	A1	3.2a
		(3)	
(c) Alt 1	Total cost $=200(1500(23))+600(83621.86152 \ldots)$	M1	3.1b
		M1	1.1b
	$\begin{aligned} & =200(34500)+600(49121.86152 \ldots) \\ & =6900000+50173116.91 \\ & =57073116.91 \end{aligned}$		
	$\Rightarrow x=$ (£) 57.1 (million) (3 sf)	A1	3.2a
		(3)	
(7 marks)			

Question 12 Notes:
(a)

M1: Complete method of applying the correct geometric series summation formula with either $n=22$ or $n=23, a=4500$ and $r=0.98$

A1: Correct answer to 3 significant figures of 83600 (tonnes)
(b)

M1:
Uses the geometric series model to apply the correct nth term formula
with either $n=22$ or $n=23, a=4500$ and $r=0.98$
A1: \quad Correct answer to 3 significant figures of 2890 (tonnes)
(c)

M1: A complete strategy to find the total cost
M1: For either

- $800(1500(23))\{=27600000\}$
- $600(83621.86152 \ldots-1500(23))\{=29473116.91\}$
- $800(1500(22))\{=26400000\}$
- 600("80736.59338..." - 1500(22)) $\{=28641956.03\}$

A1: \quad Correct answer of $x=(£) 57.1$ (million) (3 sf)
Note: Using rounded answer from part (a) gives

- $x=27600000+29460000=57060000=(£) 57.1($ million $)(3 \mathrm{sf})$
(c)

Alt 1
M1: A complete strategy to find the total cost
M1:
For either

- $200(1500(23))\{=6900000\}$
- $600(83621.86152 \ldots)\{=50173116.91\}$
- $200(1500(22))\{=6600000\}$

A1: \quad Correct answer to 3 significant figures of $x=(£) 57.1$ (million)
Note: Using rounded answer in part (a) gives

- $6900000+50160000=57060000 \Rightarrow x=(£) 57.1$ (million) $(3 \mathrm{sf})$

Note: Using $n=22$ throughout gives (a) $80736.59338 \ldots$ (b) $2944.151155 \ldots$ (c) $55.04195603 \ldots$

$x=6 \cos t, y=5 \sin 2 t ; \quad 0 \leqslant t \leqslant \frac{\pi}{2}$		
$\left\{\int y \frac{\mathrm{~d} x}{\mathrm{~d} t}\{\mathrm{~d} t\}\right\}=\int(5 \sin 2 t)(-6 \sin t)\{\mathrm{d} t\}$	M1	2.1
	A1	1.1b
$=\int(5(2 \sin t \cos t))(-6 \sin t)\{\mathrm{d} t\}$	M1	1.1b
$=-60 \int \sin ^{2} t \cos t\{\mathrm{~d} t\}$		
$0\left[\frac{1}{3} \sin ^{3} t\right]\left\{=-20\left[\sin ^{3} t\right]\right\}$	M1	3.1a
[3 $]\left\{=-20\left[\sin ^{3} t\right]\right\}$	A1	1.1b
$\left\{\right.$ Limits : $\left.x=0 \Rightarrow 0=6 \cos t \Rightarrow t=\frac{\pi}{2} ; x=3 \Rightarrow 3=6 \cos t \Rightarrow t=\frac{\pi}{3}\right\}$		
Area $(R)=\int_{0}^{3} y \mathrm{~d} x=-20\left[\sin ^{3} t\right]_{\frac{\pi}{2}}^{\frac{\pi}{3}}=-20\left(\sin ^{3}\left(\frac{\pi}{3}\right)-\sin ^{3}\left(\frac{\pi}{2}\right)\right)$	M1	1.1b
$=-20\left(\left(\frac{\sqrt{3}}{2}\right)^{3}-1\right)=-20\left(\frac{3}{8} \sqrt{3}-1\right)=20-\frac{15}{2} \sqrt{3} *$	A1*	2.1
	(7)	

Question 13 Notes:

M1: \quad Begins proof by applying a full method of $\int y \frac{\mathrm{~d} x}{\mathrm{~d} t}\{\mathrm{~d} t\}$ to give $\int(5 \sin 2 t)\left(\right.$ their $\left.\frac{\mathrm{d} x}{\mathrm{~d} t}\right)\{\mathrm{d} t\}$.
A1: $\quad \int(5 \sin 2 t)(-6 \sin t)\{\mathrm{d} t\}$.
M1: Applies $\sin 2 t \equiv 2 \sin t \cos t$ to achieve an integral of the form $\pm K \int \sin ^{2} t \cos t\{\mathrm{~d} t\} ; K \neq 0$, which may be un-simplified or simplified
M1: Applies parametric integration to achieve an integral of the form $\pm K \int \sin ^{2} t \cos t\{\mathrm{~d} t\} ; K \neq 0$, followed by a correct integration strategy of "reverse chain rule" or "integration by substitution" to give $\int \sin ^{2} t \cos t\{\mathrm{~d} t\}$ in the form $\pm \lambda \sin ^{3} t ; \lambda \neq 0$ or $\pm \lambda u^{3} ; \lambda \neq 0$ where $u=\sin t$

A1: $\quad \sin ^{2} t \cos t \rightarrow \frac{1}{3} \sin ^{3} t$ or $\sin ^{2} t \cos t \rightarrow \frac{1}{3} u^{3}$ where $u=\sin t$
M1: Applies limits of $t=\frac{\pi}{3}$ and $t=\frac{\pi}{2}$ to an integrated expression of the form $\pm \alpha \sin ^{3} t ; \alpha \neq 0$ and subtracts either way round
A1*: Correctly uses their limits to show that the area of R is $20-\frac{15}{2} \sqrt{3}$

14

$$
y=k x^{2} \text { and } y=\sqrt{k x}, \quad x \geqslant 0
$$

E.g.

- $k x^{2}=\sqrt{k x} \Rightarrow k^{2} x^{4}=k x \Rightarrow k^{2} x^{4}-k x=0 \Rightarrow k x\left(k x^{3}-1\right)=0$

$$
\{\Rightarrow k x=0 \Rightarrow x=0\} \Rightarrow k x^{3}-1=0 \Rightarrow x^{3}=\frac{1}{k} \Rightarrow x=\ldots
$$

- $k x^{2}=\sqrt{k x} \Rightarrow k^{2} x^{4}=k x \Rightarrow k x^{3}=1 \Rightarrow x=\ldots$
- $k x^{2}=\sqrt{k x} \Rightarrow k^{\frac{1}{2}} x^{\frac{3}{2}}=1 \Rightarrow x^{\frac{3}{2}}=k^{-\frac{1}{2}} \Rightarrow x=\ldots$

$x=\sqrt[3]{\frac{1}{k}}$ or $x=k^{-\frac{1}{3}}$	A1	1.1 b
$\operatorname{Area}(R)=\int_{0}^{k^{-\frac{1}{3}}}\left(\sqrt{k x}-k x^{2}\right) \mathrm{d} x=\left[\frac{\sqrt{k} x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}-\frac{1}{3} k x^{3}\right]_{0}^{k^{-\frac{1}{3}}}$	M 1	1.1 b
$=\left(\frac{2}{3} \sqrt{k} \frac{1}{\sqrt{k}}-\frac{k}{3} \cdot \frac{1}{k}\right)-(0-0)=\frac{2}{3}-\frac{1}{3}=\frac{1}{3} *$	B 1	1.1 b
	$\mathrm{~A} 1 *$	2.1

(5 marks)

Question 14 Notes:

M1: Equates the two curves and solves $k x^{2}=\sqrt{k x}$ to give $x=\ldots$
A1: $\quad x=\sqrt[3]{\frac{1}{k}}$ or $x=k^{-\frac{1}{3}}$
M1: Evidence of attempting $\int\left(\sqrt{k x}-k x^{2}\right) \mathrm{d} x$ or $\left(\int \sqrt{k x} \mathrm{~d} x-\int k x^{2} \mathrm{~d} x\right)$ with at least one of either $\sqrt{k x} \rightarrow \pm \alpha x^{\frac{3}{2}}$ or $k x^{2} \rightarrow \pm \beta x^{3} ; \alpha, \beta \neq 0$. You can ignore the limits for this mark

B1: At least one of either $\sqrt{k x} \rightarrow \frac{\sqrt{k} x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ or $k x^{2} \rightarrow \frac{1}{3} k x^{3}$, which can be un-simplified or simplified

A1*: Correct use of integration and limits to show that, for all values of k, the area of R is $\frac{1}{3}$

