

Chemistry A

Advanced GCE Unit **F325:** Equilibria, Energetics and Elements

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations available in Scoris.

Annotation	Meaning
110	Benefit of doubt given
CON	Contradiction
×	Incorrect response
	Error carried forward
	Ignore
	Not answered question
NECO	Benefit of doubt not given
1261	Power of 10 error
	Omission mark
R	Rounding error
	Error in number of significant figures
 Image: A start of the start of	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

12. The following questions should be annotated with ticks, crosses, etc. Annotations should be placed to clearly show where they apply within the body of the text (i.e. not in margins)

Question 1(a); Question 2(c), 2d(ii); Question 3e(i); Question 4d(i), 4d(ii); Question 6d; Question 7(a); Question 8(c)

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.

- When you open question **1(a)** you will see a view of page 22, one of the Additional Pages.
- If the page is blank then, using the marking mode, annotate the page with an omission mark, ^.
- Scroll down to page 23 and annotate with a ^ if the page is blank.
- Scroll down to page 24 and annotate with a ^ if the page is blank.

Mark Scheme

- If pages 22, 23 or 24 are not blank then use the paper clip icon to link the pages to the correct questions.
- You may need to contact your Team Leader if you do not know how to do this.

Qu	esti	on	Expected answers	Marks	Additional guidance	
1	a		<i>graph:</i> Rate does not change with concentration AND zero-order with respect to $I_2 \checkmark$ <i>initial rates data:</i> Mark independently When [(CH ₃) ₂ CO] × 2, rate × 2 (2 ¹) \checkmark 1st order with respect to (CH ₃) ₂ CO \checkmark When [HCI] x 2.5, rate × 2.5 \checkmark 1st order with respect to HCl \checkmark		ANNOTATIONS MUST BE USED ALLOW (straight) line with zero gradient AND zero-order ALLOW horizontal line AND zero-order IGNORE just 'constant line' OR just 'straight line' also fits 1st order CARE with comparisons in opposite direction ALLOW [(CH ₃) ₂ CO] × 0.5, rate × 0.5 (0.5 ¹) ALLOW [HCI] × 0.4, rate × 0.4 (0.4 ¹) ALLOW H ⁺ for HCl CARE: Comparison of Experiments 1 and 3 may be valid despite BOTH concentrations changing	
			Rate equation and rate constant: rate = $k[(CH_3)_2CO(aq)] [HCl(aq)] \checkmark$ $k = \frac{rate}{[(CH_3)_2CO(aq)] [HCl(aq)]} OR$ $\frac{2.10 \times 10^{-9}}{(1.50 \times 10^{-3}) \times (2.00 \times 10^{-2})} \checkmark$ = $7(.00) \times 10^{-5} OR 0.00007(00) \checkmark$ units: dm ³ mol ⁻¹ s ⁻¹ ✓	9	ALLOW ECF from incorrect orders In rate equation, square brackets are required rate = $k[(CH_3)_2CO(aq)][HCl(aq)][l_2(aq)]^0$ ALLOW H ⁺ for HCl IGNORE state symbols, even if wrong ALLOW ECF for units 'correct' for incorrect expression used to calculate <i>k</i> , <i>e.g. upside down or wrong orders</i> $\frac{[(CH_3)_2CO(aq)][H^+(aq)]}{rate} \times units: mol s dm^{-3} \checkmark$	

Qu	Question		Expected answers	Marks	Additional guidance
<u>Qu</u> 1	b	Ion	Expected answers step 1: H ₂ (g) + ICl(g) → LHS of step 1 ✓ \longrightarrow HCl(g) + HI(g) step 2: HI(g) + ICl(g) → HCl(g) + I ₂ (g) products of step 1 AND step 2 ✓	Marks 2	Additional guidanceState symbols NOT required2nd mark can ONLY be awarded provided that• 1st mark has been awarded• step 1 AND step 2 add up to the overall equation.e.g. ALLOW \longrightarrow H ₂ ICl(g)step 2: H ₂ ICl(g) + ICl(g) \longrightarrow 2HCl(g) + I ₂ (g)In step 2, ALLOW inclusion of extra species on bothsides of the equation only if they cancel,e.g. HI(g) + HCl(g) + ICl(g) \longrightarrow 2HCl(g) + I ₂ (g)
			Total	11	

Qu	esti	on	Expected answers	Marks	Additional guidance
2	а		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: $2Na^+(g) + O^{2-}(g) \longrightarrow Na_2O(s)$ <i>Question asks for a definition, not an equation</i>
	b	i	C (or 2C)ABDGE (or 2E)FAll seven correct $\checkmark \checkmark \checkmark$ Five OR six correct $\checkmark \checkmark$ Three OR four correct \checkmark	3	ALLOW 496 (OR 992) -141 790 249 G OR Lattice enthalpy/LE [OR answer to (ii)] 108 (OR 216) -414
		ii		2	IF there is an alternative answer, check the list below for marking of answers from common errorsALLOW for 1 mark: -1692 wrong sign for 414 -1916 2×108 and 2×496 not used for Na ⁺ -2412 2×108 not used for Na ⁺ -2024 2×496 not used for Na ⁺ $+2520$ wrong sign for final answer -2802 sign changed for 1st electron affinity ofoxygen -2395.5

Qu	est	ion	Expected answers	Marks	Additional guidance
					Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only
2	C		ALLOW reverse argument throughout (ORA)		ANNOTATIONS MUST BE USED NOTE: For ALL marking points, assume that the following refer to 'ions', Mg ²⁺ , etc. For 'ions', ALLOW 'atoms' For Mg ²⁺ , Na ⁺ , O ²⁻ and S ²⁻ , ALLOW symbols: Mg, Na, O and S ALLOW names: magnesium, sodium, oxygen, oxide, sulfur, sulfide BUT DO NOT ALLOW molecules <i>i.e.</i> ALLOW Mg has a smaller (atomic) radius IGNORE idea of close packing of ions
			Comparison of size AND charge of cations Mg ²⁺ is smaller AND Mg ²⁺ has a greater charge OR Mg ²⁺ has a greater charge density ✓		ORA: Na ⁺ is larger AND Na ⁺ has a smaller charge OR Na ⁺ has a smaller charge density ✓ IGNORE just Mg ²⁺ is small comparison required
			Comparison of size of anions S ^{2−} is larger OR S ^{2−} has a smaller charge density ✓ Comparison of attraction of a cation and an anion Mg ²⁺ has stronger attraction OR Na ⁺ has weaker attraction AND S ^{2−} has weaker attraction OR O ^{2−} has stronger attraction ✓	3	ORA O ^{2−} is smaller OR O ^{2−} has a larger charge density ✓ IGNORE just S ^{2−} is large comparison required ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction BUT IGNORE just 'greater force' (could be repulsion) OR comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions

Qu	esti	ion	Expected answers	Marks	Additional guidance
	d	i	Cycle needs formation of CO_3^{2-} ions (from C and O) \checkmark <i>i.e.</i> NOT breaking up of CO_3^{2-} ion	1	ALLOW carbonate ion contains C and O ALLOW carbonate ion contains 2 elements IGNORE sodium carbonate contains 3 elements IGNORE carbonate ion has covalent bonds
2	d		See also Appendix 1 at end of mark scheme Mark allocation 1 - $2Na^{+}(g) + CO_{3}^{2-}(g)$ on a top line AND $Na_{2}CO_{3}(s)$ on a lower line AND 'Lattice enthalpy' label (as below) links the lines \checkmark 2 - $2Na^{+}(g) + CO_{3}^{2-}(g)$ on a top line AND $2Na^{+}(aq) + CO_{3}^{2-}(g)$ on a middle line AND $2Na^{+}(aq) + CO_{3}^{2-}(aq)$ on a lower line AND $2Na^{+}(aq) + CO_{3}^{2-}(aq)$ on a lower line AND ΔH hydration' labels (as below) link the lines \checkmark NOTE: For hydration labels, see diagram below 2 x hydration of Na^{+} OR hydration of $2 \times Na^{+}$ is required		 ANNOTATIONS MUST BE USED MARK AS FOLLOWS 1. Mark the cycle 2. IF there is no cycle, mark the equation below State symbols are required for ALL species IGNORE direction of any arrows until MARK 3 ALLOW Na₂CO₃(aq) on a lower line as an alternative for 2Na⁺(aq) + CO₃²⁻(aq) ALLOW CO₃²⁻ hydrated first: i.e. 2Na⁺(g) + CO₃²⁻(aq) on middle line ALLOW two hydration stages combined i.e. 2Na⁺(g) + CO₃²⁻(g) on a top line AND 2Na⁺(aq) + CO₃²⁻(aq) on a lower line AND BOTH 'Hydration' labels link the lines ✓
			 3 – ∆H solution' label BELOW Na₂CO₃(s) AND ALL arrows in correct directions ✓ 	3	IF cycle shown using NaCO ₃ , Na ⁺ and CO ₃ ⁻ ALLOW ECF for third marking point only NOTE: DO NOT ALLOW ECF from any other species For simple energy cycles a maximum of 2 marks only can be awarded – See APPENDIX 1 For an equation, only 1 mark can be awarded Lattice enthalpy = $-\Delta H$ (solution) Na ₂ CO ₃ + [2 x ΔH (hydration) Na ⁺] + ΔH (hydration) CO ₃ ²⁻

Qu	Question		Expected answers	Marks	Additional guidance	
3	а		Co: (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁷ 4s ² ✓		ALLOW $(1s^22s^22p^6)3s^23p^64s^23d^7$ (i.e. 4s before 3d) ALLOW upper case D, etc. and subscripts, e.g. [Ar]4S ₂ 3D ₇	
			Co ³⁺ : (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁶ ✓	2	If included, ALLOW 4s ⁰	
	b		catalyst OR coloured ✓	1	IGNORE forms different oxidation states	
	С		Donates an electron/lone pair to a metal ion OR forms a coordinate bond to a metal ion \checkmark	1	ALLOW donates an electron pair/lone pair to a metal/transition element ALLOW dative (covalent) bond for coordinate bond	
	d	i	Co(OH)₂ ✓		Mark independently $ALLOW CO(OH)_2(H_2O)_4$	
			precipitation ✓	2	ALLOW precipitate (reaction)	
		ii	CoCl₄ ^{2−} ✓		Mark independently	
			ligand substitution ✓	2	ALLOW ligand exchange DO NOT ALLOW just substitution	

Qu	Question		Expected answers	Marks	Additional guidance			
			SEE APP	SEE APPENDIX 2 FOR EXAMPLES				
3	e	ii	143.4 OR 107.9 + 35.5 (g mol ⁻¹) used <i>i.e. molar mass AgCl</i> OR amount of AgCl = 0.02(000) mol ✓		DO NOT ALLOW AgCl ₂			
			Ratio ratio complex : CI ⁻ = 1 : 2 OR 0.01 : 0.02 ✓		DO NOT ALLOW $\frac{2.868}{0.01}$ 0.01 linked to AgCl, not complex ALLOW this mark ONLY for evidence of Cl ⁻			
			Identification – available from 1 : 2 ratio OR 2CI [−] Therefore the complex is B ✓	3	Quality of Written Communication Identification as B is dependent on correct 1 : 2 ratio OR 2 CI ⁻ for this mark			
			Total	15				

Que	esti	ion	Expected answers	Marks	Additional guidance
4	а	i	A strong acid completely dissociates AND a weak acid partially dissociates ✓	1	ALLOW ionises for dissociates
		ii	$(\mathcal{K}_{a} =) \frac{[H^{+}] [NO_{2}^{-}]}{[HNO_{2}]} \checkmark$	1	DO NOT ALLOW $\frac{[H^+]^2}{[HNO_2]}$ Square brackets are required
		iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.89 award 2 marks IF answer = 1.9 award 1 mark		IF there is an alternative answer to more decimal places, check calculator value
					Working to get to 0.0129 (mol dm ⁻³) Not required and no credit
			pH = –log 0.0129 = 1.89 √√		$[H^+] = \sqrt{K_a \times [HNO_2]} = \sqrt{4.43 \times 10^{-4} \times 0.375}$
			$PH = -\log 0.0129 = 1.09 \lor \lor$ $PH = -\log 0.0129 = 1.9 \lor$ not two decimal places	2	ALLOW 1 mark for an answer with more than 2 decimal places that rounds back to 1.89
		iv	$\frac{\text{HNO}_3}{\text{Acid 1}} + \frac{\text{HNO}_2}{\text{Base 2}} \Rightarrow \frac{\text{NO}_3^-}{\text{Base 1}} + \frac{\text{H}_2\text{NO}_2^+}{\text{Acid 2}} \checkmark$	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid–base pairs are IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> HNO ₃ + HNO ₂ \Rightarrow H ₂ NO ₃ ⁺ + NO ₂ ⁻ * Base 2 Acid 1 Acid 2 Base 1 \checkmark NOTE For the 2nd marking point (acid–base pairs),
					NOTE For the 2nd marking point (acid–base pair this is the ONLY acceptable ECF

Qu	esti	on	Expected answers	Marks	Additional guidance
					<i>i.e.,</i> NO ECF from impossible chemistry
4	b	i	Proton acceptor ✓	1	ALLOW H ⁺ acceptor
		ii	Marks are for correctly calculated values. Working shows how values have been derived. $[OH^{-}] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark$ $[H^{+}] = \frac{1.00 \times 10^{-14}}{0.08(00)} \text{ OR } 1.25 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log 1.25 \times 10^{-13} = 12.90 \checkmark$ $pOH \text{ variation (also worth 3 marks)}$ $[OH^{-}] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark$ $pOH -\log 0.08(00) = 1.10 \checkmark$ $pH = 14.00 - 1.10 = 12.90 \checkmark$	3	ALLOW by ECF $\frac{1.00 \times 10^{-14}}{\text{calculated value of [OH-]}}$ DO NOT ALLOW 12.9 <i>not two decimal places</i> $\frac{1.00 \times 10^{-14}}{\text{calculated value of [OH-]}}$ $\frac{100 \text{ NOT ALLOW 12.9 not two decimal places} \frac{12.60 \sqrt[4]{ no \times 2 \text{ for [OH-]}}}{12.60 \sqrt[4]{ no \times 2 \text{ for [OH-]}}} \frac{12.60 \sqrt[4]{ no \times 2 \text{ for [OH-]}}}{12.30 \sqrt[4]{ v} + 2 [OH-]} \frac{12.30 \sqrt[4]{ v} + 2 [OH-]}{12.3 \sqrt{1 + 2 [OH-]}} \frac{12.00 \text{NO marks}}{1.40 \text{NO marks}}$
	C		Ca(OH) ₂ + 2HNO ₂ → Ca(NO ₂) ₂ + 2H ₂ O \checkmark H ⁺ + OH ⁻ \longrightarrow H ₂ O \checkmark	2	ALLOW: $2H^+ + 2OH^- \rightarrow 2H_2O$

Question	Expected answers	Marks	Additional guidance	
4 d i	Equilibrium $H_2CO_3 \Rightarrow H^+ + HCO_3^- \checkmark$		ANNOTATIONS MUST BE USED Equilibrium sign is required IGNORE $HA \Rightarrow H^+ + A^-$ DO NOT ALLOW $H_2CO_3 \Rightarrow 2H^+ + CO_3^{2-}$ DO NOT ALLOW NaHCO ₃ \Rightarrow Na ⁺ + HCO ₃ ⁻ IGNORE $H_2O + CO_2 \Rightarrow H_2CO_3$	
	Action of buffer Added alkali H_2CO_3 reacts with added alkali $OR H_2CO_3 + OH^- \rightarrow$ OR added alkali reacts with H ⁺ $OR H^+ + OH^- \rightarrow \checkmark$ Equilibrium \rightarrow right OR equilibrium shifts forming H ⁺ $OR HCO_3^- \checkmark$		IF $HA = H^+ + A^- OR H_2CO_3 = 2H^+ + CO_3^{2-}$ have been used above: ALLOW all marks that meet marking alternatives as written NOTE The 1st 'added acid' mark cannot then be accessed Equilibrium responses must refer back to a written equilibrium BUT IF $H_2CO_3 \rightarrow H^+ + HCO_3^-$ shown above, assume that any equilibrium comments apply to the correct equilibrium IF more than one equilibrium shown, it must be clear which equilibrium is being referred to ALLOW added alkali reacts with weak acid Quality of Written Communication Mark is for linking the action of the buffer in controlling added alkali and hence pH	

Qu	esti	on	Expected answers	Marks	Additional guidance
			Added acid HCO_3^- reacts with added acid \checkmark Equilibrium \rightarrow left OR equilibrium shifts forming $H_2CO_3 \checkmark$	5	HCO ₃ ⁻ is required for this mark BUT ALLOW added acid reacts with conjugate base ONLY if HCO ₃ ⁻ is present in equilibrium with H ₂ CO ₃ DO NOT ALLOW salt reacts with added acid
4	d	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.6 : 1 OR 1 : 0.15		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			CHECK ratio is HCO_3^- : H_2CO_3 and award 5 marks . IF answer = 0.15 : 1 , CHECK ratio is H_2CO_3 : HCO_3^- and award 4 marks		ANNOTATIONS MUST BE USED FOR ALTERNATIVE using Henderson–Hasselbalch equation below
			In blood at pH 7.40, $[H^{+}] = 10^{-pH} = 10^{-7.40} = 3.98 \times 10^{-8} \pmod{\text{dm}^{-3}} \checkmark$ $K_{a} = \frac{[H^{+}] [HCO_{3}^{-}]}{[H_{2}CO_{3}]} = \frac{3.98 \times 10^{-8} \times 10.5}{1}$ OR $K_{a} = 4.18 \times 10^{-7} \pmod{\text{dm}^{-3}} \checkmark$		ALLOW 3.98 × 10^{-8} up to calculator value of 3.981071706 × 10^{-8} correctly rounded
			In blood at pH 7.20, [H⁺] = 10 ^{−pH} = 10 ^{−7.20} = 6.31 × 10 ^{−8} (mol dm ^{−3}) ✓		ALLOW 6.31 × 10^{-8} up to calculator value of 6.309573445 × 10^{-8} correctly rounded
			$\frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3^-]} = \frac{K_a}{[\text{H}^+]} \text{ OR } \frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}} \checkmark$ $= \frac{6.6}{1} \text{ OR } 6.6 : 1 \checkmark \text{ (up to calc. value, see below)}$ ALLOW any answer with > 1 decimal place that rounds back to 6.62 OR 6.63	5	Common errors $0.15:1 \checkmark \checkmark \checkmark \checkmark \checkmark Inverse ratio of H_2CO_3: HCO_3^-$ $16.6:1 \text{ OR } 0.06:1 \checkmark \checkmark \checkmark \checkmark \checkmark 10.5/1 \text{ swapped over in 2nd}$ mark giving K_a value of 3.79×10^{-9} ALLOW answer with > 1 decimal place that rounds back to 16.64 OR 16.65
			ALTERNATIVE approach for concentrations using $pH = pK_a + \log \frac{[HCO_3^-]}{[H_2CO_3^-]}$ OR $-\log K_a + \log \frac{[HCO_3^-]}{[H_2CO_3^-]}$ \checkmark	Henderso	n–Hasselbalch equation <i>(5 marks)</i>
			$K_a = pH - \log \frac{[HCO_3^-]}{[H_2CO_3^-]} = 7.40 - \log \frac{10.5}{1} = 6.38 \checkmark \text{ (subsumes)}$		previous mark) Calculator: 6.378810701

January 2012

Question		ion	Expected answers	Marks	Additional guidance
			At pH = 7.20, $\log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3^-]} = \text{pH} - \text{pK}_a = 7.20 - 6.38 = 0.82 \checkmark$ (subsumes previous mark)		subsumes previous mark)
			$\frac{[\text{HCO}_{3}^{-}]}{[\text{H}_{2}\text{CO}_{3}]} = 10^{0.82} \checkmark = \frac{6.6}{1} \text{ OR } 6.6 : 1 \checkmark$		
			Total	22	

Quest	ion	Expected answers	Marks	Additional guidance
5 a	i	Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓		circuit shown must be complete, <i>i.e. must be capable of working</i> salt bridge must be labelled. electrodes AND salt bridge must dip into/touch both solutions
		Fe ³⁺ /Fe ²⁺ half-cell with Pt electrode AND 1 mol dm ⁻³ / 1 M Fe ²⁺ and 1 mol dm ⁻³ / 1 M Fe ³⁺ ✓ Ni electrode in (1 mol dm ⁻³) Ni ²⁺ half-cell ✓	3	ALLOW cells drawn either way around ALLOW Fe ³⁺ /Fe ²⁺ 1 mol dm ⁻³ /1 M /1 molar ALLOW BOTH solutions same concentration/equimolar DO NOT ALLOW 1 mol OR 1 dm ⁻³ IGNORE any temperature or pressure, even if wrong
	ii	1.02 V AND – sign ✓ 0.49 V AND + sign ✓	2	IGNORE any sign BEFORE cell potential ALLOW 1 mark for correct values AND signs BOTH the wrong way round: <i>i.e.</i> 1.02 V AND + sign AND 0.49 V AND – sign
b		Cell A (based on 1 and 2) Ni + 2Fe ³⁺ \longrightarrow Ni ²⁺ + 2Fe ²⁺ \checkmark Cell B (based on 1 and 3) 2Cr + 3Ni ²⁺ \longrightarrow 2Cr ³⁺ + 3Ni \checkmark concentrations (of the ions in each cell) change OR concentrations are not standard \checkmark	3	In equations, ALLOW equilibrium sign, \Rightarrow instead of \rightarrow Equations are required for the first two marking points ALLOW Ni \longrightarrow Ni ²⁺ + 2e ⁻ ALLOW Ni ²⁺ + 2e ⁻ \longrightarrow Ni ALLOW any statement that a concentration is changing
c	i	$MH + OH^{-} \longrightarrow M + H_2O + e^{-1} \checkmark$	1	IGNORE 'non-standard conditions' ALLOW MH \longrightarrow M + H ⁺ + e ⁻
	ii	adsorbed (on a solid) OR on the surface (of a solid) OR as a liquid under pressure ✓ Total	1	DO NOT ALLOW adsorbed into the solid CON DO NOT ALLOW just 'as a liquid'

Qu	esti	on	Expected answers	Marks	Additional guidance
6	а		$\Delta G = \Delta H - T \Delta S \checkmark$	1	
	b		process sign		
			$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$		
			$NaCl(s) + (aq) \longrightarrow NaCl(aq) \qquad +$		
			$H_2O(I) \longrightarrow H_2O(S)$		
			$Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g) \qquad \clubsuit$		
			$CuSO_4(s) + 5H_2O(I) \longrightarrow CuSO_4 \cdot 5H_2O(s)$		
			All 5 correct \longrightarrow 2 marks $\checkmark \checkmark$ 4 correct \longrightarrow 1 mark \checkmark	2	
	С		$\Delta S = (4 \times 211 + 6 \times 189) - (4 \times 192 + 5 \times 205) \checkmark$		
			$\Delta S = (+)185 (J \text{ K}^{-1} \text{ mol}^{-1}) \checkmark$	2	ALLOW ECF from working line above from a single error
					COMMON ERRORS (+)3 (J K ⁻¹ mol ⁻¹) \checkmark (211 + 189) – (192 + 205) - 185 (J K ⁻¹ mol ⁻¹) \checkmark incorrect sign
	d		With increasing temperature $T\Delta S$ is more negative OR $T\Delta S$ decreases OR $-T\Delta S$ increases OR $ T\Delta S $ increases		ANNOTATIONS MUST BE USED
			OR magnitude of $T\Delta S$ increases \checkmark		DO NOT ALLOW just $T \Delta S$ increases
			At high temperature $T \Delta S$ is more negative that ΔH OR		DO NOT ALLOW At high <i>T</i> , ' $-T\Delta S$ is greater (than ΔH)'
			at high T, $T\Delta S$ outweighs/is more significant than ΔH		APPROACH BASED ON TOTAL ENTROPY:
			OR		With increasing temperature
			At low temperature $\Delta H - T \Delta S < 0$ OR	2	$\Delta H/T$ is less negative OR $\Delta H/T$ increases OR $-\Delta H/T$ decreases OR $ \Delta H/T $ decreases
			At high temperature $\Delta H - T\Delta S > 0 \checkmark$	_	OR magnitude of $\Delta H/T$ decreases \checkmark
					ALLOW at high temperatures
					$\Delta S - \Delta H/T < 0$

Qu	Question		Expected answers		Additional guidance
					OR ΔS is more negative than $\Delta H/T$ OR ΔS outweighs/ is more significant than $\Delta H/T$
6	e		(For feasibility,) $\Delta G < 0$ OR $\Delta G = 0$ OR $0 < \Delta H - T\Delta S$ OR $0 = \Delta H - T\Delta S$ OR $0 = 493 - T \ge 543/1000 \checkmark$ $T = \frac{\Delta H}{\Delta S} = 493 \ge 1000/543 \checkmark$ = 908 K \checkmark Units of temperature are required	3	ALLOW total entropy statement: $\Delta S(\text{total}) = 0 \text{ OR } \Delta S(\text{total}) > 0$ ALLOW 0 = 493 – T × 543 \checkmark <i>i.e.</i> This mark focuses on $\Delta G \text{ OR } \Delta H - T\Delta S \text{ being } = 0$ and NOT on conversion of ΔS value into kJ K ⁻¹ mol ⁻¹ Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in °C: i.e. ALLOW by subtraction of 273: 635, 634.9, 634.91 °C ALLOW by subtraction of 273.15: 635, 634.8, 634.77 °C up to calculator value correctly rounded ALLOW C for °C; °K for K IF ΔS has not been converted to kJ, DO NOT ALLOW 2nd mark BUT ALLOW calculated answer = 493/543 = 0.91 K (calculator: 0.907918968) ALLOW 2 marks only for absence of one of the statements required for 1st marking point
			Total	10	

Question	Expected answers		Additional guidance
7 a	FIRST, CHECK THE ANSWER ON ANSWER LINE IF numerical value = 7.81×10^{-2} OR 0.0781 AND [N ₂ O ₄] = 0.2(00 mol dm ⁻³ AND [NO ₂] = 1.6(0),		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	award 4 calculation marks and check for the mark for correct units		ANNOTATIONS MUST BE USED
	Equilibrium amount of N₂O₄ 0.400 mol N₂O₄ ✓		
	Equilibrium concentrations [N ₂ O ₄] = 0.200 mol dm ⁻³ AND [NO ₂] = 1.60 mol dm ⁻³ \checkmark		ALLOW ECF for equilibrium amounts ÷ 2
	<i>K</i> _c expression		
	$K_{\rm c} = \frac{[N_2O_4]}{[NO_2]^2}$ (Square brackets essential) OR $\frac{0.200}{1.60^2}$ \checkmark		
	Calculation = $7.81 \times 10^{-2} \checkmark$		ALLOW 3 SF up to calculator value of 0.078125 correctly rounded ALLOW ECF using calculated equilibrium concentrations
	Units dm³ mol ^{−1} ✓	5	For units, ALLOW mol ⁻¹ dm ³ ALLOW ECF from incorrect K_c expression
	Common errors for 4 calculation marks – Remember there is another mark for units		
	7.81 x 10^{-2} from wrong concs $\sqrt{2}$ + units	look for []	$1_{0} = 0.8$ AND [NO.] = 3.2
	$7.81 \ge 10^{-2}$ from wrong concs $\checkmark \checkmark +$ unitsIo 0.03906 $\checkmark \checkmark \checkmark +$ unitsno conv 0.01953 $\checkmark \checkmark \checkmark +$ unitsno conv 0.3125 $\checkmark \checkmark \checkmark +$ unitsm 12.8 $\checkmark \checkmark \checkmark +$ units: mol dm ⁻³ K _c expression 0.4125 $\checkmark \checkmark \checkmark +$ units: mol dm ⁻³ K _c expression		of both moles to concentration
	0.01953 $\sqrt[4]{4}$ + units no con	nversion o	of NO ₂ moles to concentration
	$\sqrt[4]{\sqrt{4}} + \text{units}$	moles of I	N ₂ O₄ taken as 3.2/2
	12.8 $\checkmark \checkmark \checkmark +$ units: mol dm ⁻³ K _c expression 0.125 $\checkmark \checkmark \checkmark +$ units: none INO ₂ 1	on upside	down f [NO ₂] ² ' No units' MUST be stated
		แารเธลน บ	
	0.15625 MARK BY ECF as there are many different rout	tes to thi	s answer

Question	Expected answers	Marks	Additional guidance
7 b	Each marking point is independent Effect on K_c K_c does not change (with pressure) \checkmark		ALLOW K_c only changes with temperature IGNORE K_c changes with temperature
	Comparison of conc terms after increase in pressure $[NO_2]^2$ increases more than $[N_2O_4]$ OR concentration (term) on bottom (of K_c) increases more that concentration (term) on top (of K_c) \checkmark		ALLOW $\frac{[N_2O_4]}{[NO_2]^2} < K_c$ OR $\frac{[N_2O_4]}{[NO_2]^2}$ decreases IGNORE K_c decreases
	Changes in concentrations linked to K_c (amount /concentration of) N ₂ O ₄ increases AND (amount /concentration of) NO ₂ decreases AND to maintain/restore $K_c \checkmark$	3	ALLOW top of K_c expression increases and bottom decreases until K_c is reached ALLOW equilibrium shifts to right to maintain/restore K_c IGNORE just 'restores equilibrium' K_c IS REQUIRED IGNORE just 'equilibrium shifts to right IGNORE le Chatelier response: 'equilibrium shifts to right' because there are fewer moles of gas on right-hand side
	Total	8	

Qu	esti	ion	Expected answers	Marks	Additional guidance
8	а		$Fe_2O_3 + 6H^+ \longrightarrow 2Fe^{3+} + 3H_2O \checkmark$	1	$\begin{array}{ccc} \textbf{ALLOW} & \mbox{Fe}_2 O_3 \ + \ 6 \mbox{HCI} \longrightarrow 2 \mbox{Fe} \mbox{CI}_3 \ + \ 3 \mbox{H}_2 O \\ & \mbox{OR} \\ & \mbox{Fe}_2 O_3 \ + \ 6 \mbox{HCI} \ \longrightarrow 2 \mbox{Fe}^{3+} \ + \ 6 \mbox{CI}^- \ + \ 3 \mbox{H}_2 O \\ & \mbox{ALLOW correct multiples} \\ & \mbox{IGNORE state symbols} \\ & \mbox{DO NOT ALLOW Fe}_2 \mbox{CI}_6 \ as \ a \ product \\ \end{array}$
	b		$Sn^{2+} + 2Fe^{3+} \longrightarrow Sn^{4+} + 2Fe^{2+} \checkmark$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O \checkmark$	2	IGNORE state symbols ALLOW overall equations: $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ $6FeCl_2 + K_2Cr_2O_7 + 14HCl \rightarrow 6FeCl_3 + 2CrCl_3 + 2KCl + 7H_2O$ ALLOW correct multiples

Mark Scheme

Qu	Question		Expected answers	Marks	Additional guidance
8	С		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 54.6%, award 5 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below
			Amount Fe^{2^+} in 250 cm ³ solution – 3 marks amount $\text{Cr}_2\text{O}_7^{2^-}$ used = $0.0200 \times \frac{26.5}{1000}$ = 5.30×10^{-4} (mol) \checkmark amount $\text{Fe}^{2^+} = 6 \times 5.30 \times 10^{-4}$ = 3.18×10^{-3} mol \checkmark amount Fe^{2^+} in original 250 cm ³ = $10 \times 3.18 \times 10^{-3}$ = 3.18×10^{-2} (mol) \checkmark		 Working must be to at least 3 SF throughout BUT ignore trailing zeroes, <i>i.e.</i> for 0.490 allow 0.49 ALLOW ECF from different Fe²⁺ ratio in equation from 8(b) BUT still ALLOW 6 : 1 even from different ratio in equation If no equation use actual 6 : 1 ratio DO NOT AWARD 'ratio mark' at all for use of 1 : 1 ratio – makes problem easier ECF 10 × answer above
			% Fe in ore – 2 marks mass of Fe in ore = 55.8 × 3.18 × 10 ⁻² g = 1.77444 g ✓		ECF 55.8 × answer above IF answer above has not been used AND × 55.8, DO NOT ALLOW this mark but do ALLOW final % IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
			percentage Fe in ore = $\frac{1.77444}{3.25} \times 100$ = 54.6% \checkmark	5	ECF $\frac{\text{answer above}}{3.25} \times 100$ ALLOW 54.5% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
					COMMON ERRORS 5.46 $\checkmark \checkmark \checkmark \checkmark$ \times 10 omitted 51.5 $\checkmark \checkmark \checkmark \checkmark$ titre taken as 25.0 156.2 $\checkmark \checkmark \checkmark \checkmark$ \times 159.6 instead of 55.8 15.62 $\checkmark \checkmark \checkmark$ \times 159.6 and \times 10 omitted 45.5 $\checkmark \checkmark \checkmark$ $5:1$ ratio 1.52 $\checkmark \checkmark \checkmark$ \div 6 instead of \times 6

Qu	Question		Expected answers	Marks	Additional guidance
8	d		E° for MnO ₄ ⁻ is more positive/greater than Cl ₂ OR E° for Cr ₂ O ₇ ²⁻ is less positive/smaller than Cl ₂ \checkmark MnO ₄ ⁻ reacts with Cl ⁻ OR HCl (forming Cl ₂ gas) OR Cr ₂ O ₇ ²⁻ does not react with Cl ⁻ ions \checkmark	2	ORA: E° for Cl ₂ is less positive/smaller than MnO ₄ ⁻ OR E° for Cl ₂ is more positive/greater than Cr ₂ O ₇ ²⁻
			Total	10	

APPENDIX 1

MARK 1

MARK 2

MARK 3

A simple energy cycle can be awarded 2 marks only

All species, state symbols and labels Arrows added in correct directions Mark 1

Mark 2

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

