Write your name here Surname		Other name	25
Pearson Edexcel Certificate Pearson Edexcel International GCSE	Centre Number		Candidate Number
Chemistry Unit: KCH0/4CH0 Paper: 2C	/		
Wednesday 14 June 2017 - Time: 1 hour	Morning		Paper Reference KCH0/2C 4CH0/2C
You must have: Calculator			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

0	4 ₽ Eliŭ 20 μm 20 μm 2	20 10 Neon 10	40 Argon 18	84 Krypton 36	131 Xenon 54	222 Radon 86			
~		9 Pluorine 9	35.5 Chlorine 17	80 Bromine 35	127 odine 53	210 At Astatine B5			
Q		16 Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te S2 52	210 Polonium 84			
ى ا		14 Nitrogen 7	31 Sphorus	75 AS 33	122 Sb 51	209 83 muth 83 muth			
4		[]	28 Silicon 14	73 Germanium A 32	t NF 3	207 Pb Lead 82			
ო			27 Atuminium 13	70 Gallium 31	115 Indium 49	204 Thallium 81			
		L	-	65 Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80			
				63.5 Cu Copper 29		197 Au Gold 79			
				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78			
				59 Cobalt 27	103 Rhodium 45	192 Iridium 77			
				56 Fe Iron 26	101 Ruthenium 44	961 OSmium 76			ber mic
Group	Hydrogen			55 Mn Manganese 25	99 TC echnetium	186 Re 75		Key	Relative atomic mass Symbol Name Atomic number
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W 74			
				51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73			
				48 Ti Titanium 22	91 Zrconium 40	179 Hathium 72			
				45 Scandium 21	89 89 7ttrium 39	139 Lanthanun 57	227 AC 89		
N		9 Beryllium 4	24 Mg Magnesium 12	40 Calcium 20	88 Strontium 38	137 Banum 56	Radium 88		
-		7 Li 1 3	23 Na Sodium 11	39 K Potassium 19	86 Rubidium 37	133 CS Caesium 55	223 Fr 87		
	Period	N	ო	4	Ŋ	Q	7		

DO NOT WRITE IN THIS AREA

2

THE PERIODIC TABLE

P 4 8 0 8 3 A 0 2 2 0

Answer ALL questions.

- 1 Sodium sulfate is a compound with many uses.
 - (a) The formula of the main compound used as the source of sodium sulfate is $Na_2SO_4.10H_2O$ How many different elements are shown in this formula?
 - A 2
 B 3
 C 4
 D 5
 (b) Sodium sulfate can be made from sodium hydroxide and sulfuric acid. Balance the equation for the reaction between sodium hydroxide and sulfuric acid.

 $....NaOH +H_2SO_4 \rightarrowNa_2SO_4 +H_2O$

(c) Sodium hydroxide is manufactured by the electrolysis of brine in the diaphragm cell.Sulfuric acid is manufactured using the contact process.

The table contains some statements about these two processes.

Place ticks (\checkmark) in the boxes to show the two correct statements.

(2)

(1)

(1)

brine is a solution of sodium chloride in water	
the temperature used in the contact process is greater than 1000 °C	
an equation for the contact process is $SO_2 + H_2O \rightarrow H_2SO_4$	
the reactions in the diaphragm cell are displacement reactions	
the catalyst used in the contact process is vanadium(V) oxide	

⁽Total for Question 1 = 4 marks)

DO NOT WRITE IN THIS AREA

B 2 🖸 C 3

(c) What is the formula of the compound formed between magnesium and fluorine?

- 🖾 A MgF
- B Mg₂F
- C MgF,
- \square **D** Mg₂F₂

P 4 8 0 8 3 A 0 5 2 0

Turn	over	

2 The diagram shows the positions of some elements in part of the Periodic Table.

							He
			1				
Li		В		Ν		F	
	Mg		Si		S		Ar

(a) How many periods and groups are shown in this diagram?

	Periods	Groups
A	2	4
B	3	4
🖾 C	2	8
D	3	8

- (b) How many elements shown in the diagram are noble gases?
- 🖾 A 1
- **D** 4

(1)

(1)

(1)

(d) The table shows the percentage composition by mass of a sample of silicon.

lsotope	²⁸ Si	²⁹ Si	³⁰ Si
Percentage (%)	92.2	4.70	3.10

Calculate the relative atomic mass of this sample of silicon.

Give your answer to one decimal place.

(2)

		r	elative atomic mass =		
(e) A molecule of silicon tetrafluc	oride (SiF ₄) c	ontains cov	alent bonds.		
Draw a dot and cross diagram	n to show th	e outer elec	ctrons in this molecule.	(2)	
				(2)	
		F			
		-			
	_	<u> </u>	-		
	F	Si	F		
		F			
6					
P 4 8 0 8 3 A 0 6 2 0					

(f) The table shows the boiling points of some compounds containing silicon. All of these compounds contain covalent bonds. **Boiling point in °C** Compound SiF_4 -86 SiCl₄ 58 SiO₂ 2950 SiF_4 and SiCl_4 have simple molecular structures. SiO₂ has a giant covalent structure. (i) Explain why the boiling point of $SiCl_4$ is greater than the boiling point of SiF_4 (2) (ii) Explain why the boiling point of SiO₂ is very much greater than the boiling point of SiCl (2) (Total for Question 2 = 11 marks)

DO NOT WRITE IN THIS AREA

O NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(d) When NaCl(aq) is electrolysed gas forms at the negative elec	d, two gases form at the positive electrode and one ctrode.	
The formulae of the species in	n NaCl(aq) are Na⁺, Cl⁻, H⁺, OH⁻ and H₂O.	
(i) Name the gases formed a	t each electrode.	
		(2)
positive electrode	and	
negative electrode		
(ii) Give ionic half-equations	to show the formation of each gas.	(3)
(e) The ionic half-equation for or copper(II) sulfate solution is	ne of the reactions in the cell containing	
	$Cu^{2+} + 2e^- \rightarrow Cu$	
	rge of 0.040 faradays passes through this cell.	
Calculate the mass of copper	metal formed.	(2)
	mass of copper =	
	(Total for Question 3 = 11 ma	rks)

DO NOT WRITE IN THIS AREA

	(b) Ethanol can be manufactured from compound A using reaction 1. Ethanol can also be manufactured from glucose using reaction 2.	
REA	The equations for these reactions are	
HIS A	reaction 1 $C_2H_4 + H_2O \rightarrow C_2H_5OH$	
IF	reaction 2 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	
DO NOT WRITE IN THIS AREA	Give two advantages of using each reaction to manufacture ethanol. (4)	
DON OQ	reaction 1	
NOT WRITE IN THIS AREA	reaction 2	
MB		
ON		
ð	(c) Compound C reacts with bromine to form a product with this formula.	
	CH ₃ —CH—CH—CH ₃	
	Br Br	
HIS AREA	(i) Use this formula to determine the name of compound C. (2)	
DO NOT WRITE IN THIS AREA	(ii) State the colour of the product formed when compound C reacts with bromine. (1)	
ÖN		

5 A student uses this apparatus to find the increase in temperature of water when methanol, CH₃OH, is burned.

- (a) There are several reasons why the increase in temperature is less than expected.
 - (i) One reason is the incomplete combustion of methanol to form only carbon monoxide and water.

Write the chemical equation for this incomplete combustion.

(2)

(ii) State another reason why the increase in temperature is less than expected.

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) The student records these results.

mass of burner and methanol before combustion	84.7 g
mass of burner and methanol after combustion	83.2 g
mass of water	125 g
temperature of water at start	22 °C
temperature of water at end	58 °C

(i) Calculate the heat energy change (Q), in joules, in this experiment using the expression

$Q = m \times 4.2 \times \Delta T$

where *m* is the mass of water in grams and ΔT represents the increase in temperature.

(2)

Q = J

(ii) The relative molecular mass of methanol is 32

Use this information and your value for Q to calculate the molar enthalpy change, ΔH , for the combustion of methanol.

Give your answer in kJ/mol.

(4)

 $\Delta H = \dots kJ/mol$

	energy <u>metha</u>	carbon dioxide and water	
ldentify th	ne two mistakes in his diagram.		(2)

(c) The student is given this table of average (mean) bond energies.

Bond	С—Н	C—0	0—Н	0=0	C==0
Average bond energy in kJ/mol	412	360	463	496	743

The equation for the complete combustion of methanol is

Use this equation and the information in the table to calculate another value for the molar enthalpy change, ΔH , for the combustion of methanol.

(4)

 $\Delta H = \dots kJ/mol$

(Total for Question 5 = 15 marks)

TOTAL FOR PAPER = 60 MARKS

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

