

GCSE MATHEMATICS 8300/2H

Higher Tier Paper 2 Calculator

Mark scheme

November 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comme	nts
	$12x^3 + 20x^2$	B1		
1	Additional Guidance			
	10 ⁶	B1		
2	Additional Guidance			
	$\frac{2}{3}$	B1		
3	Additional Guidance			
	1			
	$y = \frac{1}{x}$	B1		
4	Ad	ditional C	Buidance	

Itiples of 120 (> 120) ultiples of 144 (> 144) 80 676 2 × 3 × 5 2 × 2 × 3 × 3
$3 \times 2 \times 2 \times 3 \times 3 \times 5$ $4 \times 3^2 \times 5$ multiple of 720 (> 720)
B1
/enn B1 B1
B1 B1
51
B1
B1
B2
DZ
r

Question	Answer	Mark	Comme	nts
	Positive	B1	accept +ve or +	
-	Additional Guidance			
6(a)	Ignore any reference to the strength of the correlation			
 	As one jump increases so does the o	B1		
-	As one jump increases so does the other			В0

	Straight line of best fit passing through		accept if clear intention t	o draw a straight
	(150, [504, 512]) and (180, [550, 558])	B1	ignore anything either si	de of the gates
	Correct reading $\pm \frac{1}{2}$ square for their straight line of best fit	B1ft	ft straight line with positing accept if clear intention the line	-
6(b)			ignore any working lines on their graph	
	Additional Guidance			
	No line of best fit			B0B0ft
	Short straight line with positive gradient and correct reading $\pm \frac{1}{2}$ square for their line			B0B1ft
	Two lines of best fit, mark the line that leads to their answer			
Two lines of best fit, no answer, apply the usual rules of choice			al rules of choice	

Question	Answer	Mark	Comme	nts
	Valid reason	B1	eg 195 cm is outside the	e range of values
	Add	ditional G	Guidance	
Ī	Allow '195' or 'his jump' or 'it'	to repre	esent 195 cm	
	B1 responses - do not allow points/da graph or line			
	195 exceeds the data			B1
	It is beyond/outside the data			B1
	195 is higher than 185			B1
	Nobody else jumped that high			B1
	His jump is more than the others			B1
	The correlation stops at 560			B1
	All the other points/data/plots/results are less than 195			B1
6(c)	The points/data/plots/results don't reach 195			B1
	The points/data/plots/results don't reach that far			B1
	The points/data/plots/results stop at 185			
	The pattern/trend/correlation may chapoints/data/plots/results	B1		
	The pattern/trend/correlation may cha	ange		В0
	It doesn't fit the pattern/trend/correlat	ion		В0
	Line is not long enough			В0
	No points at/near/around/close to 195	5		В0
	195 is anomalous or 195 is an outl	ier		В0
	Not enough data			В0
	This data is not on the graph			В0
	It is too different to the other points			В0
	Ignore extra statements that do not co	ontradict a	a valid reason	

Question	Answer	Mark	Comments
	Alternative method 1		
	110 ÷ 2 or 55 or 2 ÷ 110 or 0.018(1) or 0.0182 or 44 ÷ 110 or 0.4 or	M1	oe
7	110 ÷ 44 or 2.5 44 ÷ (110 ÷ 2) or 0.8 or $\frac{4}{5}$	M1dep	oe eg 2880 or calculation that would evaluate to 0.8 eg $2 \div 110 \times 44$ or $44 \div 110 \times 2$ or $2 \div (110 \div 44)$ or $\frac{110 + 44}{110 \div 2} - 2$ or $2.8 - 2$
	48	A1	
	Alternative method 2		
	110 ÷ 2 ÷ 60 or 0.916 or 0.917 or 0.92 or 2 × 60 ÷ 110 or 1.09(0) or 1.091	M1	oe
	44 ÷ (110 ÷ 2 ÷ 60)	M1dep	oe calculation that would evaluate to 48 eg 44 × 2 × 60 ÷ 110
	48	A1	

Additional Guidance is on the next page

Question Answer	Mark	Comments
-----------------	------	----------

	Additional Guidance		
	Ignore units for M marks eg 55 miles	M1	
	Do not award A1 if premature approximation for 48 seen		
	eg		
	(Alt 1) 0.018 × 44 = 0.8 Answer 48	M2A1	
	(Alt 1) 0.018 × 44 = 0.792 and 0.792 × 60 = 47.52 Answer 48	M2A0	
	(Alt 2) 44 ÷ 0.917 = 48	M2A1	
7 cont	(Alt 2) 44 ÷ 0.917 = 47.9 Answer 48	M2A0	
	(Alt 2) 44 × 1.09 = 48	M2A1	
	(Alt 2) 44 × 1.09 = 47.96 Answer 48	M2A0	
	48 followed by answer 2 h 48 min	M2A0	
	48 followed by answer 168 min	M2A0	
,	Allow M1 even if not subsequently used		
	Alt 1 Working in seconds leading to 2880	M2	

Comments

Mark

Answer

	a = 7	B2	B1 $3ax - 10a$ or $3ax = 21x$ or $3ax - 21$ or $3a = 21$ or $3a - 21 = 21$ or $21 \div 3$ oe or $-10a = 2b$ oe	
	b = -35	B1ft	ft $-5 \times \text{their } a \text{ where } a$	≠ 0
	Ad	ditional G	Guidance	
8	Ignore collection error if correct expansion seen eg $3ax - 10a - 21x + 2b = 0$ (should be $-2b$)			B1
	Ignore incorrect simplification if corre eg $3ax - 10a = -7ax$	ion seen	B1	
	Allow eg $a \times 3x$ for $3ax$			
	Allow eg $a3x$ for $3ax$			
	Embedded 7 with $a = 7$ not stated eg $7(3x - 10)$ or $7 \times 3x = 21x$ or $21 \div 7 = 3$			B1
	Allow B1 even if not subsequently used			
	$\frac{180-56}{2}$ or 62	M1	oe may be on diagram	
	180 + their 62 or 360 – 56 – their 62	M1dep	oe eg 62 + 62 + 118	
	242	A1		
9	Ad	ditional G	Buidance	
	62 seen even if not subsequently use	62 seen even if not subsequently used		
	Answer (0)62			M1M0A0
	56 only			M0
	242 seen but answer given as 62			M1M0A0
	242 seen but then further work eg 360 – 242 and answer 118			M1M0A0

Question

Question	Answer	Mark	Comments
	Alternative method 1		
	21 - 17 or $17 - 21or 17 + 4 or 21 - 4or (difference is) 4or (7th term =) 21 + 4 or 25or (4th term =) 17 - 4 or 1317 + (100 - 5) \times 4$	M1	may be seen as 17 21 4 allow (difference is) –4 must be using 4
	or 17 + 95 × 4		oe calculation that would evaluate to 397
	or 17 + 380 or		5th term + 95 × 4
	$21 + (100 - 6) \times 4$ or $21 + 94 \times 4$ or $21 + 376$		6th term + 94 × 4
10	or 17 – 4 × 4 + 99 × 4 or 1 + 99 × 4	M1dep	1st term + 99 × 4
	or 1 + 396 or		
	$17 - 5 \times 4 + 100 \times 4$ or $-3 + 100 \times 4$ or $-3 + 400$		0th term + 100 × 4
	397	A1	
	Alternative method 2		
	4 <i>n</i>	M1	oe eg n × 4
	4 <i>n</i> – 3	A1	oe
	397	A1	

Additional Guidance is on the next page

Question Answer	Mark	Comments
-----------------	------	----------

	Additional Guidance				
	Term to term rule described eg Add on 4 each time	M1			
	a + 5d = 21, $a + 4d = 17$ only	MO			
	Difference shown as 4 then eg $n + 4$	M1			
	Only eg $n + 4$ or $3n + 4$	MO			
	4n-3 seen even if not subsequently used	M1A1			
10 cont	4n seen eg $4n + 13$ even if not subsequently used	M1			
	Correct list going up in 4s stopping at 397	M1M1A1			
	List going up in 4s with an error or not reaching 397	M1M0A0			
	No subtraction seen and incorrect difference eg 17 21 +3	МО			
	Alt 2 allow n4	M1			
	4 <i>n</i> – 3 = 100	M1A1A0			
	Allow M1 even if not subsequently used				

Question	Answer	Mark	Comme	nts
	120 000 × 1.05 or 126 000	M1	oe eg 120 000 + 0.05 × 120 000 may be implied by eg 144 000	
	120000×1.05^4 or $\frac{583443}{4}$	M1dep	oe eg their 126 000 × 1. and their 132 300 × 1.05 or 3 and their 138 915 × 1.05	
	145860(.75) or 145860.8(0) or 145861 or 145900 or 146000	A1	if no value given implied 150 000	by M2 seen and
	150 000	B1ft	ft any answer seen with > 2sf condone 150 000.00	
	Ad			
11	126 000 × 1.05 ³	M1M1		
	Answer only 145860(.75) or 145860.8(0) or 1458	M1M1A1B0		
	Answer only 150 000	Zero		
	For year on year working allow round up to M2A0B1ft			
	eg 126 000 × 1.05 = 132 000	M1		
	and 132 000 × 1.05 = 138 000 and 138 000 × 1.05 = 144 900 Answe	M1A0B1ft		
	120 000, 126 000, 132 000, 138 000, does not imply truncation, this is just	M1M0A0		
	120 000 + 4 × 0.05 × 120 000 or 120	M1M0A0		
	Misreads can score up to M2A0B1ft			
	Treat calculating 5 years as a misrea of years eg 120 000 × 1.05 ² will score			

Question	Answer	Mark	Comme	nts
	Alternative method 1			
	15 ² or 225 and $(16 \div 2)^2$ or 8 ² or 64	M1	oe	
	$\sqrt{15^2 + (16 \div 2)^2}$ or $\sqrt{\text{their } 225 + \text{their } 64}$ or $\sqrt{289}$ or 17	M1dep	oe full trigonometric method scores M2 eg $\frac{15}{\sin\left(\tan^{-1}\frac{15}{8}\right)}$	d leading to 17
	6 × their 17 + 3 × 16 or 102 + 48	M1dep	oe	
	150	A1	SC2 48 + $6\sqrt{161}$ or [1	24.08, 124.2]
	Alternative method 2			
12	$(48 \div 2)^2$ or 24^2 or 576 and $(15 \times 3)^2$ or 45^2 or 2025	M1	oe eg $(16 \times 1.5)^2$ and	(3 × 15) ²
	$\sqrt{(48 \div 2)^2 + (3 \times 15)^2}$ or $\sqrt{\text{their } 576 + \text{their } 2025}$ or $\sqrt{2601}$ or 51	M1dep	oe full trigonometric method leading to 51 scores M2 eg $\frac{45}{\sin\left(\tan^{-1}\frac{15}{8}\right)}$ or $\frac{45}{\sin\left(\tan^{-1}\frac{45}{24}\right)}$	
	2 × their 51 + 3 × 16 or 102 + 48	M1dep	oe	
	150	A1	SC2 48 + $6\sqrt{161}$ or [1	24.08, 124.2]
	Additional Guidance			
	$15^2 - 8^2$ or $45^2 - 24^2$			M1M0M0A0 (unless SC2 scored)
	Allow 61.9(2) or 61.93 or 62 for $\tan^{-1} \frac{15}{8}$ but do not award A1 if premature approximation seen			_

Question	Answer	Mark	Comme	nts	
	15 × 24 or 360 and 40 × 76 or 3040 and 55 × 52 or 2860 and 75 × 48 or 3600 or 9860	M1	allow one incorrect midp	point	
13(a)	(their 360 + their 3040 + their 2860 + their 3600) ÷ 200 or 9860 ÷ 200	M1dep	condone bracket error se eg 360 + 3040 + 2860 +		
	49.3	A1	accept 49 if full working correct midpoints	shown using	
	Additional Guidance				
	Four values or products with three correct from 360, 3040, 2860 and 3600 implies the first mark and could be used to score up to M2				
	Correct products seen in the table or working but a different method shown in the working lines eg 200 ÷ 4			MO	
	Ignore attempts to convert to minutes eg 49 min 18 s or 49 min 30 s	and seco	onds after 49.3 seen		
	49.3 in working with answer $30 \leqslant t < 10^{-1}$	50		M2A0	

Question	Answer	Mark	Comments
	24 ÷ 30 or 0.8 or 76 ÷ 20 or 3.8 or 52 ÷ 10 or 5.2 or 48 ÷ 30 or 1.6 or	M1	implied by a correct bar
_	four frequency densities in correct proportion At least three of	M1dep	eg 8 and 38 and 52 and 16 implied by at least three bars in correct proportion
13(b)	O.8 and 3.8 and 5.2 and 1.6 At least 3 bars in correct proportion with matching scale on vertical axis or at least 3 bars in correct proportion	M1dep	proportion
	with a matching key Fully correct histogram with scale on vertical axis or a key	A1	$\pm \frac{1}{2}$ small square
	Ad	ignore frequency polygon if included	
	Allow up to M2 even if not subsequer	ntly used	
	Correct bars must have correct width	S	

Question	Answer	Mark	Comments
14(a)	$\frac{1}{2}(13 + 10) \times 12 \text{ or } 138$ or $\frac{1}{2} \times 10 \times 8 \text{ or } 40$ $\frac{1}{2}(13 + 10) \times 12 \text{ or } 138$ and $\frac{1}{2} \times 10 \times 8 \text{ or } 40$ or 178	M1	oe oe
	25 ÷ (their 138 + their 40)	M1dep	oe
	0.14(0)	A1	
		Additional G	uidance

Question	Answer	Mark	Comments	
	less than and valid reason	B2	eg less than and you should be dividir by a bigger number or less than and the (actual) area is bigger	
	Ade	ditional G	uidance	
	If no box is ticked, condone if less than is clearly stated in working lines			
14(b)	Wrong box or > 1 box ticked			В0
14(0)	less than and he has not included all the base			B2
	less than and it doesn't cover 100% of the base			B2
	less than and it doesn't include the parts outside the areas			B2
	less than and the area is an underestimate			B2
	less than and it is an underestimate			B1
	less than and it is only an estimate			B1
	less than and the answer to (a) is not the exact area		B1	

	$w = \sqrt[3]{y^2}$	B1		
15	Ade	ditional G	Guidance	

Question	Answer	Mark	Comments	
	$\frac{a}{100} \times b = \frac{b}{100} \times a$	B1	oe eg both are equal to	<i>ab</i> 100
16(a)	Additional Guidance			
	ab = ba			В0
	Only numerical example(s)			В0

	No and valid reason	B1	eg No and it should be 40% of 160 or No and it should be 60% (= 140% of 60) or No and 160 ≠ 60 or No and 40 ≠ 140 or No and 64 and 84	
	Add			
16(b)	If neither box is ticked condone if No			
	Yes or both boxes ticked			В0
	No and the <i>a</i> s aren't the same	B1		
	No and the b s aren't the same			B1
	No and 160 ≠ 140			В0
	No and 40 ≠ 60			В0
	No and a values change from 160 to 140			В0
	No and b values change from 40 to 60			В0
	No and 96 and 84			В0
	No and they give different answers			В0

Question	Answer	Mark	Comme	nts	
4-4.	12	B2	B1 (1 – 0.85) × 80 or 0.15 × 80 or 0.85 × 80 or 68		
17(a)	Additional Guidance				
-	For B1 allow oe calculations eg 17	× 4		B1	

17(b)	25	B2	B1 0.71 × 80 or 56.8 or 56 or (1 – 0.71) × 80 or 0 or 23.2 or 24 or (0.71 – 0.3875) × 80 or 0.3225 × 80 or 25.8	.29 × 80
	Additional Guidance			
	For B1 allow oe calculations $eg(0.$	$71-\frac{31}{80}$	× 80	B1
	Answer only 26			В0

Question	Answer	Mark	Comments		
	Alternative method 1 large rectangle – 4 squares				
	x(x + 5)	M1			
	$x^{2} + 5x - 400 = 1000$ or $x^{2} + 5x - 400 - 1000 = 0$ or $x^{2} + 5x = 1000 + 400$ with M1 seen	M1dep	400 may be seen as 4×10^2 or 4×100 oe equation with brackets expanded and 400 and 1000 seen		
	$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0		
18(a)	Alternative method 2 three vertical rectangles				
	$(x + 5)(x - 20)$ or $(2 \times)10(x - 15)$	M1	(x - 20) may be seen as $(x - 10 - 10)(x - 15)$ may be seen as $(x + 5 - 10 - 10)$		
	$x^2 - 20x + 5x - 100 + 20x - 300$ = 1000 or $x^2 - 15x - 100 + 20x - 300 = 1000$ with M1 seen	M1dep	oe equation with brackets expanded and 100 and 300 and 1000 seen allow 150 seen twice for 300		
	$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0		

Mark scheme and Additional Guidance continue on the next page

	Mark	Comme	ents
Alternative method 3 three horizontal rectangles			
$x(x - 15)$ or $(2 \times)10(x - 20)$	M1	(x – 20) may be seen as	s(x-10-10)
		(x – 15) may be seen as	s(x + 5 - 10 - 10)
$x^2 - 15x + 20x - 400 = 1000$ with M1 seen	M1dep	oe equation with bracke 400 and 1000 seen	ts expanded and
		allow 200 seen twice for	400
$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0	
Alternative method 4 central rectar	ngle + fou	r outer rectangles	
$(x-15)(x-20)$ or $(2 \times)10(x-15)$	N/1	(x - 20) may be seen as	s(x-10-10)
or $(2 \times)10(x - 20)$	IVI I	(x - 15) may be seen as	s(x + 5 - 10 - 10)
$x^2 - 20x - 15x + 300 + 20x - 300 +$		oe equation with bracke	•
20x - 400 = 1000		allow 150 seen twice for	
or 2 35x + 300 + 20x 300 + 20x	M1dep	allow 200 seen twice for	400
x - 35x + 300 + 20x - 300 + 20x $-400 = 1000$			
with M1 seen			
$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0	
Additional Guidance			
If 1st M1 seen award M1 even if expression is not subsequently used			
For M1 allow multiplication signs eg $x \times (x + 5)$			M1
$x(x+5) = x^2 + 5x$			M1
1000 + 400 = 1400			
$x^2 + 5x = 1400$ (previous line shows	s 1000 and	d 400)	M1
$x^2 + 5x - 1400 = 0$	A1		
$x(x+5) = x^2 + 5x$			M1
$x^2 + 5x = 1400$ (equation does not have 1000 and 400)			MO
$x^2 + 5x - 1400 = 0$			A0
Only equation seen is $x^2 + 5x - 1400 = 0$ the maximum mark is M1			
	$x(x-15)$ or $(2 \times)10(x-20)$ $x^2-15x+20x-400=1000$ with M1 seen $x^2+5x-1400=0$ with M2 seen Alternative method 4 central rectal $(x-15)(x-20)$ or $(2 \times)10(x-15)$ or $(2 \times)10(x-20)$ $x^2-20x-15x+300+20x-300+20x-400=1000$ or $x^2-35x+300+20x-300+20x-400=1000$ with M1 seen $x^2+5x-1400=0$ with M2 seen Ad If 1st M1 seen award M1 even if expr For M1 allow multiplication signs eg. $x(x+5)=x^2+5x$ $x^2+5x=1400$ (previous line shows $x^2+5x=1400=0$ $x^2+5x=1400=0$ $x^2+5x=1400=0$ $x^2+5x=1400$ (equation does not be $x^2+5x=1400=0$	$x(x-15)$ or $(2 \times)10(x-20)$ M1 $x^2-15x+20x-400=1000$ with M1 seen M1dep $x^2+5x-1400=0$ with M2 seen A1 Alternative method 4 central rectangle + fou $(x-15)(x-20)$ or $(2 \times)10(x-15)$ M1 or $(2 \times)10(x-20)$ M1 $x^2-20x-15x+300+20x-300+20x-400=1000$ or $x^2-35x+300+20x-300+20x-400=1000$ with M1 seen $x^2+5x-1400=0$ with M2 seen A1 Additional C If 1st M1 seen award M1 even if expression is a series of the seri	$x(x-15) \text{ or } (2\times)10(x-20)$ $x^2 - 15x + 20x - 400 = 1000$ $x^2 + 5x - 1400 = 0 \text{ with M2 seen}$ $x^2 - 15(x - 20) \text{ may be seen as } (x - 15) \text{ may be seen as } (x - 15) \text{ may be seen as } (x - 15) \text{ may be seen as } (x - 15) \text{ may be seen as } (x - 15) \text{ may be seen as } (x - 15) \text{ may be seen as } (x - 16) \text{ must have} = 0$ Alternative method 4 central rectangle + four outer rectangles $(x - 15)(x - 20) \text{ or } (2\times)10(x - 15) \text{ or } (2\times)10(x - 20)$ $x^2 - 20x - 15x + 300 + 20x - 300 + 20x - 300 + 20x - 400 = 1000$ or $x^2 - 35x + 300 + 20x - 300 + 20x - 400 = 1000$ with M1 seen $x^2 + 5x - 1400 = 0 \text{ with M2 seen}$ All must have = 0 Additional Guidance If 1st M1 seen award M1 even if expression is not subsequently used For M1 allow multiplication signs eg $x \times (x + 5)$ $x(x + 5) = x^2 + 5x - 1400 = 0$ $x^2 + 5x = 1400 \text{ (previous line shows 1000 and 400)}$ $x^2 + 5x = 1400 \text{ (equation does not have 1000 and 400)}$ $x^2 + 5x = 1400 \text{ (equation does not have 1000 and 400)}$

Question	Answer	Mark	Comme	nts	
	No and valid reason	B1	eg No and <i>x</i> cannot be context)	negative (in this	
	Ado	ditional G	Guidance		
	If neither box is ticked condone if No	is clearly	stated in working lines		
-	Yes or both boxes ticked			В0	
-	Allow 'it' to represent x				
	No and x is (only) 35			B1	
18(b)	No and it cannot be –40			B1	
-	No and the width would be negative			B1	
-	No and the width should be positive			B1	
	No she put –40			B1	
-	No and you can't have two answers			В0	
-	No and the answers are too big			В0	
	No and it should be 40 (and –35)			В0	
-	periodic	B1			
19	Ado	ditional G	Guidance	T	
		_			
	(7, 30)	B1			
20	Ade	ditional G	Guidance		

Question	Answer	Mark	Comme	nts
	Alternative method 1			
	n-1 and n and $n+1$	M1	oe eg $(n-1)n(n+1)$ o	or $n(n-1)(n+1)$
	$n(n^2 + n - n - 1)$ with M1 seen or $n(n^2 - 1)$ with M1 seen or $(n^2 - n)(n + 1)$ with M1 seen or $(n^2 + n)(n - 1)$ with M1 seen	M1dep		
	$n^3 - n^2 + n^2 - n + n$ with M2 seen or $n^3 - n + n$ with M2 seen	M1dep		
	n^3 with M3 seen	A1		
	Alternative method 2			
	x and $x + 1$ and $x + 2$	M1	oe eg $x(x + 1)(x + 2)$ o	(x + 1)x(x + 2)
21	$(x^2 + x)(x + 2)$ with M1 seen or $(x^2 + 2x)(x + 1)$ with M1 seen or $x(x^2 + 2x + x + 2)$ with M1 seen or $x(x^2 + 3x + 2)$ with M1 seen	M1dep		
	$x^3 + 3x^2 + 2x + x + 1$ with M2 seen or $x^3 + x^2 + 2x^2 + 2x + x + 1$ with M2 seen	M1dep		
	$x^{3} + 3x^{2} + 3x + 1$ and $(x + 1)^{3}$ with M3 seen	A1	allow $x^3 + 3x^2 + 3x + 1$ and n^3 with M3 seen if $n = x$	c + 1 stated
	Ad	ditional G	Guidance	
	Only numerical example(s)			Zero
	Condone use of any letter eg ${\cal N}$			

Question	Answer	Mark	Comments		
	The gradient of the chord from A to B	B1			
22	Additional Guidance				
	Valid criticism		eg the scale factor should be 4		
		B1	or		
			surface area is 248 cm ²		

	valid childism		eg the scale factor shou	iiu be 4
		B1	or	
			surface area is 248 cm ²	
	Ade	ditional C	Guidance	
	sf = 2 ²			B1
	62 × 4			B1
23(a)	62 × 2 ²	B1		
	The area is 248 (ignore units)			B1
	Should be 2 × 10 × 6 + 2 × 10 × 4 + 2 × 6 × 4			B1
	Condone It should be 4			B1
	4			В0
	He should have multiplied all lengths by 2			В0
	It should be 10 × 4 × 6			В0

Question	Answer	Mark	Comme	nts
	Alternative method 1			
	$\sqrt[3]{\frac{125}{8}}$ or $\frac{5}{2}$ or $\sqrt[3]{\frac{8}{125}}$ or $\frac{2}{5}$	M1	oe eg $\sqrt[3]{15.625}$ or 2.5 or $\sqrt[3]{0.064}$ or 0.4	
	$5 \times \sqrt[3]{\frac{125}{8}}$ or $5 \div \sqrt[3]{\frac{8}{125}}$	M1dep	oe	
	12.5 or $12\frac{1}{2}$ or $\frac{25}{2}$	A1		
	Alternative method 2			
23(b)	$5 \times 3 \times 2 \times \frac{125}{8}$ or 468.75	M1	oe eg $5 \times 3 \times 2 \times 15.6$ or $30 \times \frac{125}{8}$	25
	$x \times \frac{3x}{5} \times \frac{2x}{5} = \text{their } 468.75$	M1dep	oe eg $\frac{6}{25}x^3$ = their 468	.75
	12.5 or $12\frac{1}{2}$ or $\frac{25}{2}$	A1		
	Additional Guidance			
	$\sqrt{\frac{125}{8}}$ or $\sqrt{\frac{8}{125}}$			M0M0A0
	$x \times \frac{x}{\frac{5}{3}} \times \frac{x}{\frac{5}{2}} = \text{their } 468.75$			M1M1
	Allow 1.66 or 1.67 for $\frac{5}{3}$			
	eg $x \times \frac{x}{1.66} \times \frac{x}{2.5} = \text{their } 468.75$			M1M1

Question	Answer	Mark	Comn	nents	
	Alternative method 1				
	–2 used for value of <i>x</i>	M1			
	–2 used for value of xand13 used for value of y	M1dep			
	15	A1			
	Alternative method 2	<u> </u>			
24	–2 used for x value	M1			
	11 – 2 × –2	M1dep	oe		
	15	A1			
		Additional G	uidance		
	Answer only of 13			M0M0A0	
	Answer only of -2			M0M0A0	
	13 used for value of $y-x$ does not score 2nd M1				

Question	Answer	Mark	Comments
	CED = 4x or $ACB = 180 - y - (90 - x)$ $CED = 4x$	M1	may be on diagram may be on diagram
	and $DCE = \frac{180 - 4x}{2}$ or ACB = 180 - y - (90 - x) and $DCE = 180 - y - (90 - x)$	M1dep	allow $DCE = ACB$ for $DCE = 180 - y - (90 - x)$
25	M2 seen and $y + 90 - x + \frac{180 - 4x}{2} = 180$ and y = 3x or M2 seen and $\frac{180 - 4x}{2} = 180 - y - (90 - x)$ and y = 3x	A1	M2 seen and 2(180 - y - (90 - x)) + 4x = 180 and y = 3x
	M2A1 seen and all reasons given	A1	eg alt(ernate) seg(ment theorem) and (base angles of) isos(celes) triangle (are equal) and (vertically) opp(osite) angles (are equal) and angles in a triangle (sum to 180°)

Additional Guidance is on the next page

Question	Answer	Mark	Comments
----------	--------	------	----------

	Additional Guidance	
	Allow CE = DE for the reason	
	(base angles of) isos(celes) triangle (are equal)	
	Allow $90 - y + x$ or $180 - y - 90 + x$ for $180 - y - (90 - x)$	
	Allow $90 - 2x$ for $\frac{180 - 4x}{2}$	
25 cont	Allow clear indication of angles	
	eg	
	allow <i>E</i> for <i>CED</i>	
	do not allow <i>C</i> for <i>ACB</i> unless seen on diagram	
	Assuming $y = 3x$	Zero
	For 1st A1, allow equivalent equations	
	eg For $2(180 - y - (90 - x)) + 4x = 180$ allow	
	2(180 - y - (90 - x)) = 180 - 4x	

Question	Answer	Mark	Comments
	Alternative method 1		
	$P = kQ^2$ or $1.25 = k \times 0.5^2$		oe
	or	M1	
	$Q = \frac{c}{R} \text{or } 0.5 = \frac{c}{6}$		
	$k = \frac{1.25}{0.5^2}$ or $k = 5$		oe
	or $P = 5Q^2$		
	or $c = 0.5 \times 6 \text{ or } c = 3$	M1	
	or $Q = \frac{3}{R}$		
26	$P = 5Q^2$ and $Q = \frac{3}{R}$		oe
	or	A1	
	k=5 and $c=3$		
	$0.8 = \text{their 5} \times \left(\frac{\text{their 3}}{R}\right)^2$		ft their equations of the form $P = kQ^2$ and $Q = \frac{c}{R}$
	or	M1	oe
	$(R =) \sqrt{\frac{\text{their } 5 \times (\text{their } 3)^2}{0.8}}$	1011	eg $(Q =) \sqrt{\frac{0.8}{\text{their 5}}}$ or $Q = 0.4$
			and $(R =)$ their 3 their 0.4
	7.5 or $7\frac{1}{2}$ or $\frac{15}{2}$	A1ft	ft their equations of the form $P = kQ^2$ and $Q = \frac{c}{R}$ with 3rd M1 scored

Mark scheme and Additional Guidance continue on the next page

Question	Answer	Mark	Comments			
Alternative method 2						
26 cont	$P = \frac{k}{R^2}$ or $1.25 = \frac{k}{6^2}$	M1	oe			
	$k = 1.25 \times 6^2$	M1dep	oe			
	$P = \frac{45}{R^2}$ or $k = 45$	A1	oe			
	$0.8 = \frac{\text{their } 45}{R^2}$ or $(R =) \sqrt{\frac{\text{their } 45}{0.8}}$	M1	oe ft their equation of the fo	$rm P = \frac{k}{R^2}$		
	7.5 or $7\frac{1}{2}$ or $\frac{15}{2}$	A1ft	ft their equation of the form $P = \frac{k}{R^2}$ with 3rd M1 scored			
	Additional Guidance					
	Allow k and c to be any letters, including using both as k in Alt 1					
	Alt 1 $kP = Q^2$ leading to $k = 0.2$			M1M1		
	Alt 2 $kP = \frac{1}{R^2}$ leading to $k = \frac{1}{45}$ (allow 0.022)			M1M1A1		

Question	Answer	Mark	Comments			
27	$\sqrt[3]{13}$ or 2.35(1)	M1	$\sqrt[3]{6+7}$ or $\sqrt[3]{3\times2+7}$			
	2.413() or 2.4238 or 2.424 or 2.4256 or 2.4259	M1dep				
	2.426	A1				
	Additional Guidance					
	Answer 2.426 (eg from using starting value of 1)			M2A1		
	Answer only 2.425			M0M0A0		
	$\sqrt{13}$			M0M0A0		
	Condone $2 = \sqrt[3]{13}$ etc					