Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE in Chemistry (9CH0) Paper 03 General and Practical Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link:
www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 9CH0_03_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answers		Additional Guidance	Mark
1(a)(i)	- All species and balancing correct - All state symbols correct	(1) (1)	Examples of equation $\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ Or $\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ Or $\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right](\mathrm{s})+3 \mathrm{H}^{+}(\mathrm{aq})$ on LHS as an alternative Allow correct equations for sequential protonation e.g. $\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right](\mathrm{s})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}(\mathrm{aq})$ M2 consequential on M1 being awarded, or a 'nearmiss' e.g. Cl^{-}on both sides / one missing charge	(2)

Question Number	Acceptable Answers	Additional Guidance	
$\mathbf{1 (a) (i i)}$	A description that makes reference to the following points:	(2)	
	• green solid / grey-green solid	(1)	Allow ppt/precipitate for solid
• forms green solution	Allow purple /violet /ruby solution Do not award yellow-green / red / blue-green bubbles etc means MP2 should not be awarded Ignore adjectives to describe green e.g. pale		

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(iii)	- all species and balancing correct - all state symbols correct	Examples of equation $\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}(\mathrm{aq})$ Or $\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right](\mathrm{s})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Allow $\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-}(\mathrm{aq})$ Or $\left[\mathrm{Cr}(\mathrm{OH})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}(\mathrm{aq})$ as complex ion on RHS, with rest of equation correctly balanced M2 consequential on M1 being awarded, or a 'near-miss'	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 (a) (i v)}$	An answer that makes reference to the following point:	Ignore 'Qualifiers' for any colour (e.g. 'dark', 'deep', etc)	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 (b) (i)}$	A description that makes reference to the following points:		(2)
	• (blue solution initially forms pale) blue precipitate (1)	Allow 'solid' / 'ppt' for 'precipitate' Do not award for 'blue crystals' Do not allow dark blue ppt	

Question Number	Acceptable Answers		Additional Guidance	Mark
1(b)(ii)	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ - LHS of equation correct - RHS of equation correct	(1) (1)	Ignore state symbols even if incorrect Ignore balanced sulfate ions Do not award just Cu^{2+} on LHS Allow $\begin{aligned} & {\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+4 \mathrm{NH}_{3} \rightarrow} \\ & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}} \end{aligned}$ Do not award for $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} /$ $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ on RHS	(2)

(Total for Question 1 = 11 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
2(a)	An answer that makes reference to the following points: - (First change) Adjust so that the flow of water goes in at the bottom of the condenser and out at the top of the condenser - (Reason) Keeps condenser full of water / water removes (any) air in the condenser / allows more efficient / better cooling / prevents 'air-lock' - (Second change) (Replace funnel and) seal with a thermometer or a stopper - (Reason) Prevents vapour / gas / product / reactants escaping	First and second change can be in either order Ignore prior refluxing Ignore water bath Allow just "water should enter the condenser at the bottom" OR Just "water should leave at the top" OR Just "swap the tubes around" Allow replacing the funnel with a tap / dropping funnel Ignore thermometers used to measure boiling temperatures	(4)

Question Number	Acceptable Answers	Additional Guidance	Mark
2(b)		(2) Do not penalise 'connectivity' to OH unless $\mathrm{O}-\mathrm{H}-\mathrm{C}$	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(c)(i)	3-methylbutan-2-ol / secondary alcohols cannot be oxidised to a carboxylic acid OR 3-methylbutanone / the product / ketones cannot be (further) oxidised	Allow only primary alcohols can be oxidised to carboxylic acids	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark	
2(c)(ii)	$\bullet \mathrm{H}_{2} \mathrm{SO}_{4}$	Ignore `sulfuric acid'	(1)	
Question Number	Acceptable Answers		Additional Guidance	Mark
:---:	:---:	:---:	:---:	:---:
2(c)(iii)	- all formulae correct - all state symbols correct	(1) (1)	Example of equation: $\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \\ & \mathrm{OR}^{\mathrm{Na}} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \\ & \mathrm{OR} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{NaHSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+ \\ & \mathrm{CO}_{2}(\mathrm{~g}) \end{aligned}$ Use of NaCO_{3} or $\mathrm{H}_{2} \mathrm{CO}_{3}$ scores zero Allow any acid. M2 consequential on M1 being awarded, or a 'near-miss'	(2)
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
2(d)(i)	An explanation that makes reference to the following points: - peak at $1720\left(\mathrm{~cm}^{-1}\right)$ - shows presence of a $\mathrm{C}=\mathrm{O}$ bond / carbonyl	Allow any absorbance between $\begin{equation*} 1720 \text { to } 1700\left(\mathrm{~cm}^{-1}\right) \tag{1} \end{equation*}$ Marks cannot be awarded if ANY incorrect other peaks are identified e.g. peak due to $\mathrm{C}=\mathrm{C} /$ peak due to $\mathrm{O}-\mathrm{H}$ Ignore references to alkane C-H bonds / fingerprint region Do not award just 'ketone' for MP2	(2)	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
2(d)(ii)	An answer that makes reference to the following points: - peak between 3750 and $3200\left(\mathrm{~cm}^{-1}\right)$ will disappear / will be absent from the spectrum OR Peak(s) above $3000\left(\mathrm{~cm}^{-1}\right)$ will disappear / will be absent from the spectrum - (because) 3-methylbutan-2-ol / the alcohol / O-H has now been removed	Allow any absorbance between $3750 \text { to } 3200\left(\mathrm{~cm}^{-1}\right)$ Ignore references to fingerprint region	(2)	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---	:---	:---	:---:	
2(e)(i)	(identify the peak at the) highest/largest m / z value	Allow Peak (furthest) to the right/last peak on the spectrum	(1)	
		Do not award the mark for "largest peak" / "highest peak" Ignore		
"parent ion" / molecular ion peak / References				
to $m / z=86$				\quad.
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
2(e)(ii)	 (1) (1)	Allow positive charge anywhere on structure Ignore open bonds Penalise non-displayed formulae once only Ignore brackets around the structure Penalise missing charge once only	(2)	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---	:---:	:---	:---:	
$\mathbf{2 (f) (i)}$	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$	Molecular formulae must be used throughout	(2)	
	• left-hand side of equation correct	(1)	Allow [O] above the arrow	
	• right-hand side of equation correct	(1)	Do not award for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$ as the alcohol Ignore state symbols if incorrect or conditions mentioned	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
2(f)(ii)	- calculation of moles of both of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ and $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ - calculation of mass of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ OR - calculation of theoretical mass of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ and moles of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ - calculation of mass of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	Example of calculation Moles $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}=\frac{2.15}{86.0}=0.025(0)(\mathrm{mol})$ and moles $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}=\frac{0.025(0)}{62.5} \times 100=0.04(00)$ (So) mass of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}=0.04(00) \times 88=3.52 \mathrm{~g}$ Theoretical mass $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}=\frac{2.15}{62.5} \times 100=3.44 \mathrm{~g}$ and moles $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}=\frac{3.44}{86.0}=0.04(00)=m o l \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ (So) mass of $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}=0.04(00) \times 88=3.52 \mathrm{~g}$ Correct answer with no working scores (2) Allow TE from MP1 Award 1 mark for $3.36 \mathrm{~g}, 1.375 \mathrm{~g}$ or 2.2 g	(2)	
(Total for Question 2 = 21 marks)				
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---	:---	:---	:---:	
3(a)	\bullet 2,6-diaminohexanoic acid	Allow 2,6-diaminehexanoic acid	(1)	
		Ignore any additional commas or hyphens or spaces Do not award 2,6-diamminohexanoic acid		
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
3(b)	- Deprotonated structure - Protonated structure - Ester structure	Allow displayed /structural /condensed formulae Allow $\mathrm{NH}_{2}-$ Allow $-\mathrm{CO}_{2}^{-}$ Allow -COONa but penalise if $\mathrm{O}-\mathrm{Na}$ covalent bond is shown Both NH_{2} groups must be protonated Allow $\mathrm{NH}_{3}{ }^{+}-/{ }^{+} \mathrm{H}_{3} \mathrm{~N}-$ Allow $-\mathrm{CO}_{2} \mathrm{H}$ Allow $\mathrm{CO}_{2} \mathrm{CH}_{3}$ Allow $\mathrm{NH}_{3}{ }^{+}$- or $\mathrm{NH}_{2}-$ for each amine group Penalise wrong side chain only once If alanine used throughout then only MP3 can be awarded	(3)	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
3(c)	Any one of: OR OR	Must be the dipeptide and not the repeat unit Allow $-\mathrm{CO}_{2} \mathrm{H}$ Allow $-\mathrm{H}_{2} \mathrm{~N}$ Allow -CONH- / -COHN- unless C-H-N Allow zwitterions or cyclic dipeptides Allow skeletal / part-skeletal formulae	(1)	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
3(d)	An explanation that makes reference to the following points: - (In acidic conditions) lysine (ion) has two positive charges (whereas alanine has only one) - (So lysine ion has) has greater attraction for the stationary phase	Ignore comments on retention time, solubility, polarity, dipoles or intermolecular forces Allow 'greater positive charge' Allow lysine has $2 \mathrm{NH}_{2}$ groups that can be protonated Allow 'greater affinity for stationary phase' 'adheres better to stationary phase' 'better adsorption onto stationary phase' Allow 'polar phase' for 'stationary phase' Allow reverse argument for alanine Mark points M1 and M2 independently	(2)	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---:	:---:	:---:	:---:	
4(a)	- 1.60 - (+) 42.5	Do not award MP1 for "1.6" (must be to 2 D.P.) Do not award MP2 for " 42.50 " (must be to 1 D.P.) Penalise D.P. error once only	(2)	
Question Number	Acceptable Answers	Additional Guidance	Mark	
:---	:---	:---	:---:	
4(b)	$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+1.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		(2)	
	Balanced equation	$\mathbf{(1)}$	Do not award multiples (enthalpy change is for the complete combustion of one mole) for MP1	
	State symbols all correct	$\mathbf{(1)}$	MP2 depends on the award of MP1 or correct species	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(d)(i)	$(\pm) 0.7(\%)$	Allow from 1 SF up to calculator value correctly rounded where $(\%$ uncertainty $=)(\pm) \frac{1}{150} \times 100=0.66666 \ldots 7(\%)$	(1)
		Allow 0.6 or $\frac{2}{3}$	
Do not award $0.66 / 0.6$			
Question Number	Acceptable Answers	Additional Guidance	Mark
:---:	:---:	:---:	:---:
4(d)(ii)	An answer that makes reference to the following points: - Calculation of the \% uncertainty using the $25 \mathrm{~cm}^{3}$ measuring cylinder Then any two from: - \% uncertainty with use of $25 \mathrm{~cm}^{3}$ measuring cylinder is greater - Repeated use of the small measuring cylinder will lead to greater transfer losses - Repeated use will take more time	Needs to show combined error in using the $25 \mathrm{~cm}^{3}$ six times is greater than using $250 \mathrm{~cm}^{3}$ measuring cylinder once only Award MP1 EITHER if multiplies errors: $100 \times(0.2 / 25) \times 6=4.8 \%$ OR If adds errors $100 \times(1.2 / 150)=0.8 \%$ Do not award $(0.2 / 25) \times 100=0.8 \%$ Do not award 'easier' to use larger measuring cylinder	(3)
Question Number	Acceptable Answers	Additional Guidance	Mark
:---:	:---:	:---:	:---:
4(d)(iii)	An answer that makes reference to any three of the following points: - heat/energy loss (to the surroundings) - evaporation of methanol / water from the calorimeter - incomplete combustion (of methanol) - (specific) heat capacity of the calorimeter/apparatus has been ignored	Ignore experiment carried out under non-standard conditions Ignore just 'no lid' Allow calorimeter has not been calibrated	(3)
Question Number	Acceptable Answers	Additional Guidance	Mark
:---:	:---:	:---:	:---:
4(e)	An explanation that makes reference to the following points: - The second value will be less exothermic / less negative - Some energy will be used to boil the water/boiling water is endothermic Water can only be heated to $100^{\circ} \mathrm{C} /$ Temperature rise (measured) can only be (a maximum) of $40^{\circ} \mathrm{C}$ Greater heat losses in the $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ range	Allow 'more positive' or 'smaller in magnitude' Do not accept 'greater' or 'smaller' for 'less negative' Do not award just "the water boils" Mark points M1 and M2 independently	(2)
Question Number	Acceptable Answers	Additional Guidance	Mark
:---:	:---:	:---:	:---:
4(f)	An explanation that makes reference to the following points: Either - student 2's value will be similar / the same - (As) both the energy change and moles/mass (of methanol) burned will be higher/ Ratio of energy change to moles/mass (of methanol) burned will be the same/ The energy change is proportional to the moles/mass (of methanol) burned Or - \quad student 2 's value will be less negative/ less exothermic - greater heat loss because higher temperature/heated for longer	Allow 'temperature change' for 'energy change' Allow 'more positive' or 'smaller in magnitude' or 'smaller' for 'less negative' Mark points MP1 and MP2 independently within each route	(2)
Question Number	Acceptable Answers	Additional Guidance	Mark
:---:	:---:	:---:	:---:
4(g)	An answer that makes reference to the following points: - (Calculated) value of moles (of methanol) burned will be less / too small - The calculated value will be more exothermic / more negative	Allow both marks for a calculation using M_{r} of 46.0 (instead of 32.0), giving a final ΔH value (approx.) of $-766\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow 'increase' or 'greater' for 'more negative' MP2 depends on MP1	(2)

(Total for Question 4 = 21 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{5 (a)}$	C atom of $\mathrm{C}-\mathrm{Mg}$ bond labelled as $\delta-$ and Mg labelled as $\delta+$	Do not award full + or - charge Ignore $\delta-$ on Br	(1)

| Question
 Number | Acceptable Answers | Additional Guidance | Mark |
| :--- | :---: | :--- | :--- | :---: |
| 5(b)(i) | | Allow non-displayed formula | (1) |

Question Number	Acceptable Answers	Additional Guidance	Mark
5(b)(ii)	• 2-methylpentan-3-ol	Allow 2-methyl-3-pentanol	(1)
		No TE on incorrect formula from 5(b)(i)	

Question Number	Acceptable Answers	Additional Guidance	Mark	
$\mathbf{5 (c)}$	$\bullet \checkmark$ next to nucleophile	(1)	If more than two boxes ticked scores (0)	(2)
	$\bullet \checkmark$ next to reducing agent	(1)		

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{5 (d)}$	\bullet propane $/ \mathrm{C}_{3} \mathrm{H}_{8}$	Accept name or formula or structural / skeletal / displayed formula	(1)
		Ignore additional inorganic products Do not award just 'alkane'	
		If name and formula given then they both must be correct	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(a)	- 23.15 and 23.55 and 23.20 completed in table - \checkmark beneath titres $\mathbf{1}$ and $\mathbf{3}$ and mean titre $=23.18\left(\mathrm{~cm}^{3}\right)$	All three titres must be shown to 2 D.P. Allow 23.2 or $23.175\left(\mathrm{~cm}^{3}\right)$	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{6 (b)}$	(From)(pale) pink/purple (to) colourless	Both colours needed for the mark Do not award mauve or magenta or violet for pink/purple Ignore references to 'clear'	(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
6(c)	- calculation of moles of MnO_{4}^{-}in $25.0 \mathrm{~cm}^{3}$	(1)	Example of calculation $\text { Moles } \begin{aligned} \mathrm{MnO}_{4}^{-} & =\frac{0.02(00) \times 25.0}{1000} \\ & =5(.00) \times 10^{-4} / 0.0005(00) \end{aligned}$ (mol)	(5)
	- calculation of moles of $\mathrm{NO}_{2}{ }^{-}$in mean titre - calculation of moles of $\mathrm{NO}_{2}{ }^{-}$in $250 \mathrm{~cm}^{3}$	(1)	```Moles \(\mathrm{NO}_{2}{ }^{-}=2.5 \times\) moles \(\mathrm{MnO}_{4}^{-}\) in mean titre \(=1.25 \times 10^{-3} / 0.00125(\mathrm{~mol})\)```	
		(1)	$\begin{aligned} & \text { Moles } \mathrm{NO}_{2}^{-} \\ & \text {in } 250 \mathrm{~cm}^{3}= \\ & \text { moles } \mathrm{NO}_{2}^{-} \text {in mean titre } \times \underline{\text { mean titre from (a) }} \\ & =1.25 \times 10^{-3} \times \quad \frac{250}{23.18} \\ & =0.013481449 \\ & =0.0135(\mathrm{~mol}) \end{aligned}$	
			Allow TE on mean titre from (a) Ignore SF except 1 SF	
	- calculation of molar mass	(1)	- Molar mass $=2 \times \frac{1.15}{0.0135}$	
			$\begin{aligned} & =170.3703704\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & =170.4\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \end{aligned}$	

	- calculation of \boldsymbol{x} correctly to the nearest whole number:	Allow TE - $x=\frac{170.4-116.3}{18(.0)}$ $x=3.0055555556$ $\boldsymbol{x}=3$ (must be to nearest whole number) Allow TE from molar mass calculated Allow alternative correct methods for MP4 and MP5 Correct value of \boldsymbol{x} with no working scores (1)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(d)	$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{NO}_{2}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{NO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$ - evidence of multiplying 1st equation by 2 and 2nd equation by 5 - overall equation correct with H^{+}and $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{e}^{(-)}$ cancelled as appropriate	Each of the following equations score (1) mark overall: $\begin{align*} 2 \mathrm{MnO}_{4}^{-}+ & 5 \mathrm{NO}_{2}^{-}+16 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O} \\ & \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{NO}_{3}^{-}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{H}^{+} \tag{1} \end{align*}$ OR $\begin{align*} 2 \mathrm{MnO}_{4}^{-}+ & 5 \mathrm{NO}_{2}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O} \tag{1}\\ & \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{NO}_{3}^{-}+8 \mathrm{H}_{2} \mathrm{O} \end{align*}$ OR $\begin{aligned} 2 \mathrm{MnO}_{4}^{-}+ & 5 \mathrm{NO}_{2}^{-}+16 \mathrm{H}^{+} \\ \rightarrow & 2 \mathrm{Mn}^{2+}+5 \mathrm{NO}_{3}^{-}+10 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Ignore state symbols, even if incorrect Allow multiples	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(e)	An explanation that makes reference to the following: Either - the (calculated) value of \boldsymbol{x} would be too high - The moles of MgCO_{3} would be too low / the moles of $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2} \cdot \boldsymbol{x} \mathrm{H}_{2} \mathrm{O}$ would be too low / the M_{r} of $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2} \cdot \boldsymbol{x} \mathrm{H}_{2} \mathrm{O}$ would be too high Or - (So) the (calculated) value of \boldsymbol{x} would be unchanged (so this does not explain the discrepancy) - Only a small amount/mass of MgCO_{3} would dissolve because it is very slightly soluble	Allow 'amount' or 'mass' for 'moles' MP2 depends on MP1 MP2 depends on MP1	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(f)	An answer that makes reference to the following points: - the MgCO_{3} would decompose / the residue would contain NaNO_{2} / the residue would contain (the excess) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ - (so) the (proposed) method is not valid / appropriate / suitable	Ignore references to just 'impurities' M2 dependent on M1	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{6 (g)}$	An answer that makes reference to the following point:		(1)
	- heat (the sample) to constant mass	Allow repetition of heating and weighing until there is no change in mass (of the sample) Ignore references to 'brown gas' etc	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(h)	An answer that makes reference to the following points: - use a larger mass (of the hydrated salt) - Use a balance that weighs to 3 D.P. (rather than 2 D.P.)	Ignore references to repeat measurements Allow statements such as 'use a balance that weighs to more decimal places' /'greater resolution' / ' a more precise/sensitive balance' Do not allow 'more accurate'	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
*7(a)	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fullysustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would score 2 reasoning marks, and 3 or 4 indicative points would score 1 reasoning mark. A total of 2, 1 or 0 indicative points would score 0 marks for reasoning. Reasoning marks may be subtracted for extra incorrect chemistry.	(6)

Indicative content (IPs)

IP1:

- (transition metal) forms an ion with an incomplete d sub-shell

IP2:

- scandium and zinc are not transition metals

IP3:

- Sc^{3+} and $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$

IP4:

- Zn^{2+} and $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$

IP5:

- Sc^{3+} and d sub-shell empty / d-orbitals empty

IP6:

- Zn^{2+} and d sub-shell full / ALL d-orbitals are full

Allow ‘partially-filled' for incomplete
Allow d-orbital(s)
Do not award " d-shell"
Allow " D " for " d " throughout
Allow if only Sc and Zn are used to illustrate d-block elements that are not transition metals

Allow $4 \mathrm{~s}^{0}$ and/or $3 \mathrm{~d}^{0}$
Penalise use of [Ar] once only

Allow " Sc^{3+} has no d sub-shell"

Allow 'd orbital is full' if clarified by $3 \mathrm{~d}^{10}$

Question Number	Acceptable Answers	Additional Guidance	Mark
7(b)	- calculation of moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ - calculation of moles of Mn^{2+} - deduction of whole number mole ratio of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}: \mathrm{Mn}^{2+}$ (1) - deduction of total number of electrons lost by 3 mol of Mn^{2+} - deduction of final oxidation state of manganese	Example of calculation - moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=\frac{0.100 \times 20.0}{1000}$ $=2(.00) \times 10^{-3}(\mathrm{~mol})$ - moles of $\mathrm{Mn}^{2+}=\frac{0.200 \times 30.0}{1000}$ $=6(.00) \times 10^{-3}(\mathrm{~mol})$ $\begin{array}{ll}- & \text { mole ratio } \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ = & \mathrm{Mn}^{2+} \\ 1 & :\end{array}$ - $3 \mathrm{~mol} \mathrm{Mn}{ }^{2+}$ lose a total of $6 \mathrm{e}^{-}$ - each Mn^{2+} loses $2 \mathrm{e}^{-}$, so final oxidation state of Mn is (+)4 / IV $/ \mathrm{Mn}^{4+}$ MP3 and MP4 may be awarded via alternative methods e.g. use of oxidation numbers / moles of electrons correct final oxidation state with no working scores M5 only	(5)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(c)	- calculation of moles of Cr MP2, 3 \& 4 are only available for answers using a 3:2 mole ratio - deduction of mole ratio of \mathbf{X} to Cr^{3+} - calculation of moles of \mathbf{X} - calculation of molar mass / A_{r} of \mathbf{X} and identification of \mathbf{X} accordingly	Example of calculation Moles $\mathrm{Cr}=\frac{1.456}{52(.0)}=0.028(0)$ $\mathbf{3} \mathrm{mol} \mathbf{X}$: $\mathbf{2} \mathrm{mol} \mathrm{Cr}^{3+} / \mathrm{Cr}$ Allow $2 \mathrm{Cr}^{3+}+3 \mathbf{X} \rightarrow 3 \mathbf{X}^{2+}+2 \mathrm{Cr}$ $\begin{equation*} \text { Moles } \mathbf{X}=0.028(0) \times 1.5 \tag{1} \end{equation*}$ $=0.042(0)$ Correctly multiplying by 1.5 for MP3 implies MP2 $\begin{align*} M_{r} & =\frac{1.021}{0.042}(0) \\ & =24.3\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ (so) \mathbf{X} is magnesium $/ \mathrm{Mg}$ COMMENT: If transpose 3:2 ratio, \mathbf{X} has $M_{r}=54.7\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ and $\mathbf{X}=\mathrm{Mn}$ so scores M1, then M3 and M4 by TE (i.e. (3) marks overall)	(4)

(Total for Question 7 = 15 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)	- first two curly arrows and lone pair shown on the nitrogen - structure of intermediate including both charges - three curly arrows and structure of final organic product		(3)

Question Number	Acceptable Answers	Additional Guidance	Mark
9(a)(i)	$\left(K_{\mathrm{c}}=\frac{[\mathrm{HI}(\mathrm{~g})]^{2}}{\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]}\right.$	Ignore missing state symbols or units Do not award round brackets	(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
9(a)(ii)	$\left(K_{c}=\right) \frac{4 y^{2}}{(a-y)^{2}}$ - Numerator term correct - Denominator term correct	(1) (1)	Allow square brackets Allow (2y) ${ }^{2}$ Allow ($a^{2}-2 a y+y^{2}$) or $(a-y)(a-y)$	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{9 (b) (\mathbf { i })}$	• both values correct to 2 DP	1.13	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
9(b)(ii)	- All 7 points plotted correctly - Appropriate straight line of best fit, drawn through the origin (1)	Allow TE for incorrect values from 9(b)(i) Do not allow all points above or below the line of best fit Allow line of best fit to intersect one square either side of the origin	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
9(b)(iii)	- co-ordinates correctly read off the line on graph - gradient correctly calculated	At least 1 line must be shown on the graph to indicate selection of co-ordinates Example of calculation $\frac{3.40-0.00}{4.50-0.00}=\text { gradient of graph }$ Gradient $=0.76$ Ignore SF except 1SF Do not allow units for the gradient Allow a value from 0.71 to 0.81 inclusive	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
9(b)(iv)	- $\frac{\sqrt{ } K_{c}}{2+\sqrt{K_{c}}}=$ gradient / $\frac{\mathbf{y}}{\mathbf{a}}$ - re-arrangement of expression and calculation of K_{c} (1)	Example of calculation $\begin{gathered} \frac{\sqrt{ } K_{\mathrm{c}}}{2+\sqrt{ } K_{\mathrm{c}}}=0.76 \\ K_{\mathrm{c}}=40.1 / 40 \text { (no units) } \end{gathered}$ Allow TE on gradient from part (b)(iii) $K_{\mathrm{c}}=[(2 \times \mathrm{grad}) /(1-\mathrm{grad})]^{2}$ Correct answer with no working scores (2)	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{9 (c)}$	\bullet hydrogen is flammable / explosive	Allow iodine vapour damages eyes /toxic Allow hydrogen iodide is corrosive / acidic / irritant (if qualified) / lachrymator	(1)
		Ignore references to high pressure Ignore references to safety precautions	

Question Number	Acceptable Answers	Additional Guidance	Mark	
9(d)	\bullet Faster rate of reaction / increased rate	(1)	Ignore references to shifting position of equilibrium	(2)
	$\bullet K_{c}$ unchanged	(1)		

Question Number	Acceptable Answers	Additional Guidance	Mark
9(e)(i)	An explanation that makes reference to the following points: - (K_{c} is) smaller / decreases / gets less - (forward) reaction is exothermic	Allow reverse/backwards reaction is endothermic MP2 dependent on MP1	(2)
Question Number	Acceptable Answers	Additional Guidance	Mark
9(e)(ii)	- straight line drawn on the graph with a less steep gradient (and goes through the origin)	Do not allow if lines cross	(1)

(Total for Question 9 = 16 marks)
TOTAL FOR PAPER = 120 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code
For more information on Edexcel qualifications, please visit our website

www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

