Mark Scheme 4766 June 2007 | Q1 (i) | $\binom{8}{4}$ ways to select = 70 | $M1 \text{ for } \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ | 2 | |-----------|--|--|---| | | (4) | (4)
A1 CAO | | | (ii) | 4! = 24 | B1 CAO | 1 | | | | TOTAL | 3 | | Q2
(i) | Amount 0- <20 20- <50 50- <100 100- <200 Frequency 800 480 400 200 | B1 for amounts B1 for frequencies | 2 | | (ii) | Total \approx $10 \times 800 + 35 \times 480 + 75 \times 400 + 150 \times 200 = £84800$ | M1 for their midpoints × their frequencies A1 CAO | 2 | | | | TOTAL | 4 | | Q3 (i) | Mean = $\frac{3026}{56}$ = 54.0 | B1 for mean | | | | $S_{xx} = 178890 - \frac{3026^2}{56} = 15378$ | M1 for attempt at S_{xx} | | | | $s = \sqrt{\frac{15378}{55}} = 16.7$ | A1 CAO | 3 | | (ii) | $\overline{x} + 2s = 54.0 + 2 \times 16.7 = 87.4$
So 93 is an outlier | M1 for their \overline{x} +2×their s A1 FT for 87.4 and comment | 2 | | (iii) | New mean = $1.2 \times 54.0 - 10 = 54.8$
New $s = 1.2 \times 16.7 = 20.1$ | B1 FT
M1A1 FT | 3 | | | | TOTAL | 8 | | Q4
(i) | (A) P(at least one) = $\frac{36}{50} = \frac{18}{25} = 0.72$
(B) P(exactly one) = $\frac{9+6+5}{50} = \frac{20}{50} = \frac{2}{5} = 0.4$ | B1 aef M1 for (9+6+5)/50 A1 aef | 3 | | (ii) | P(not paper aluminium) = $\frac{13}{24}$ | M1 for denominator 24
or 24/50 or 0.48
A1 CAO | 2 | | (iii) | P(one kitchen waste) = $2 \times \frac{18}{50} \times \frac{32}{49} = \frac{576}{1225} = 0.470$ | M1 for both fractions M1 for 2 × product of both, or sum of 2 pairs A1 | 3 | | | | TOTAL | 8 | | Q5 (i) | 11^{th} value is 4,12 th value is 4 so median is 4
Interquartile range = $5 - 2 = 3$ | B1
M1 for either quartile
A1 CAO | 3 | |--------|---|---|---| | (ii) | No, not valid any two valid reasons such as: the sample is only for two years, which may not be representative the data only refer to the local area, not the whole of Britain even if decreasing it may have nothing to do with global warming more days with rain does not imply more total rainfall a five year timescale may not be enough to show a long term trend | B1 E1 E1 | 3 | | | | TOTAL | 6 | | Q6 (i) | Either P(all 4 correct) = $\frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{35}$ | M1 for fractions, or ⁷ C ₄ seen | 2 | | | or P(all 4 correct) = $\frac{1}{{}^7C_4} = \frac{1}{35}$ | A1 NB answer given | | | (ii) | $E(X) = 1 \times \frac{4}{35} + 2 \times \frac{18}{35} + 3 \times \frac{12}{35} + 4 \times \frac{1}{35} = \frac{80}{35} = 2\frac{2}{7} = 2.29$ $E(X^2) = 1 \times \frac{4}{35} + 4 \times \frac{18}{35} + 9 \times \frac{12}{35} + 16 \times \frac{1}{35} = \frac{200}{35} = 5.714$ | M1 for Σ <i>rp</i> (at least 3 terms correct) | | | | Var(X) = $\frac{200}{35} - \left(\frac{80}{35}\right)^2 = \frac{24}{49} = 0.490 \text{ (to 3 s.f.)}$ | M1 for $\sum x^2 p$ (at least 3 terms correct) | | | | | M1dep for – their $E(X)^2$ | 5 | | | | A1 FT their $E(X)$ provided $Var(X) > 0$ | | | | | TOTAL | 7 | | | Section B | | | |--------|---|---|------| | Q7 (i) | Positive result 0.95 Has the disease 0.05 Clear 0.06 Doubtful result 0.90 Clear 0.91 Negative result 0.99 Clear | G1 probabilities of result G1 probabilities of disease G1 probabilities of clear G1 labels | 4 | | (ii) | P(negative and clear) = 0.91×0.99 | M1 for their 0.91 × 0.99 | 2 | | (iii) | $ = 0.9009 $ P(has disease) = $0.03 \times 0.95 + 0.06 \times 0.10 + 0.91 \times 0.01 $ $ = 0.0285 + 0.006 + 0.0091 $ $ = 0.0436 $ | A1 CAO M1 three products M1dep sum of three products A1 FT their tree | 3 | | (iv) | P(negative has disease) $= \frac{P(\text{negative } and \text{ has disease})}{P(\text{has disease})} = \frac{0.0091}{0.0436} = 0.2087$ | M1 for their 0.01 × 0.91
or 0.0091 on its own or
as numerator M1 <i>indep</i>
for their 0.0436 as
denominator
A1 FT their tree | 3 | | (v) | Thus the test result is not very reliable. A relatively large proportion of people who have the disease will test negative. | E1 FT for idea of 'not reliable' or 'could be improved', etc E1 FT | 2 | | (vi) | P(negative or doubtful and declared clear)
= $0.91 + 0.06 \times 0.10 \times 0.02 + 0.06 \times 0.90 \times 1$
= $0.91 + 0.00012 + 0.054 = 0.96412$ | M1 for their 0.91 +
M1 for either triplet
M1 for second triplet
A1 CAO | 4 18 | | 08 | $X \sim B(17, 0.2)$ | | | |-------|--|--------------------------------------|----| | Q8 | | D1 for 0 5490 | | | (i) | $P(X \ge 4) = 1 - P(X \le 3)$ | B1 for 0.5489 | _ | | | = 1 - 0.5489 = 0.4511 | M1 for 1 – their 0.5489 | 3 | | | | A1 CAO | | | (ii) | $E(X) = np = 17 \times 0.2 = 3.4$ | M1 for product | 2 | | | | A1 CAO | | | (iii) | P(X = 2) = 0.3096 - 0.1182 = 0.1914 | | | | | P(X = 3) = 0.5489 - 0.3096 = 0.2393 | B1 for 0.2393 | | | | P(X = 4) = 0.7582 - 0.5489 = 0.2093 | B1 for 0.2093 | 3 | | | So 3 applicants is most likely | A1 CAO <i>dep</i> on both | | | | | B1s | | | (iv) | (A) Let $p =$ probability of a randomly selected maths graduate | B1 for definition of <i>p</i> in | | | (11) | applicant being successful (for population) | context | | | | H_0 : $p = 0.2$ | Context | | | | * * | D1 for II | | | | $H_1: p > 0.2$ | B1 for H ₀ | | | | (B) H ₁ has this form as the suggestion is that mathematics | B1 for H ₁ | 4 | | | graduates are more likely to be successful. | E1 | | | (v) | Let $X \sim B(17, 0.2)$ | B1 for 0.1057 | | | | $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8943 = 0.1057 > 5\%$ | B1 for 0.0377 | | | | $P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9623 = 0.0377 < 5\%$ | M1 for at least one | | | | | comparison with 5% | 4 | | | So critical region is {7,8,9,10,11,12,13,14,15,16,17} | A1 CAO for critical | 7 | | | 50 Critical region is { 7,0,9,10,11,12,13,14,13,10,17 } | | | | | | region dep on M1 and at least one B1 | | | | | least one B1 | | | (vi) | Because $P(X \ge 6) = 0.1057 > 10\%$ | E1 | | | | Either: comment that 6 is still outside the critical region | | 2 | | | Or comparison $P(X \ge 7) = 0.0377 < 10\%$ | E1 | | | | | TOTAL | 18 |