

Chemistry A

Advanced GCE Unit **F325:** Equilibria, Energetics and Elements

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

Annotation	Meaning
	Benefit of doubt given
CON	Contradiction
×	Incorrect response
	Error carried forward
I	Ignore
MA	Not answered question
NECE	Benefit of doubt not given
101	Power of 10 error
<u> </u>	Omission mark
	Rounding error
	Error in number of significant figures
 Image: A start of the start of	Correct response
	Noted but no credit given
REP	Repeat

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

All questions should be annotated with ticks to show where marks have been awarded in the body of the text.

All questions where an ECF has been applied should also be annotated with the ECF annotation.

Use the omission mark where the answer is not sufficient to be awarded a mark.

The following questions should be annotated with full annotation (ie ticks, crosses etc) to show where marks have been awarded in the body of the text: **1(c)**, **3(a)**, **4(d)**(i), **4(d)**(i), **7(d)**, **8(c)**

G	Question		Answer	Marks	Guidance
1	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions (under standard conditions) ✓	2	IGNORE 'energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark
	(b)	(i)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2	Correct species AND state symbols required for both marks 2e ⁻ required for left-hand response ALLOW e for e ⁻ Mark each marking point independently
		(ii)	 (enthalpy change of) formation (of calcium oxide) ✓ (enthalpy change of) atomisation of oxygen ✓ Second electron affinity (of oxygen) ✓ 	3	calcium oxide not required for this mark DO NOT ALLOW 'lattice formation' (<i>confusion with LE</i>) atomisation AND oxygen/O ₂ /½O ₂ /O both required (<i>atomisation of calcium is also in cycle</i>) IGNORE oxygen or oxygen species, e.g. O ⁻ DO NOT ALLOW calcium

Ques	tion	Answer	Marks	Guidance
	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -3454 (kJ mol ⁻¹) award 2 marks 	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
		OR -635 - 2819 ✓ = -3454 ✓ (kJ mol ⁻¹)		ALLOW for 1 mark: -3736 use of +141 instead of -141 (+)3454 all signs reversed (+)2184 wrong sign before 2819 -2184 wrong sign for 635 -1858 wrong sign for +798 Any other number: CHECK for ECF from 1st marking point Award 1 mark for one transcription error only and everything else correct: e.g. +187 instead of +178 IF any value has been omitted, award zero

Question	Answer Marks Guidance						
1 (c)	 For first 2 marks, IGNORE nuclear attraction OR proton attraction Property AND effect required IGNORE 'atomic' and 'atoms' and 'molecules' and assume that 'size' and 'charge' refers to ions IGNORE LE increases OR LE decreases IGNORE bond strength; strength of ionic bonds 						
	First 2 marks Decrease in (ionic) size AND more negative LE OR more exothermic OR more attraction ✓ Increase in (ionic) charge OR charge density AND more negative LE OR more exothermic OR more attraction ✓ Link between LE and attraction Lattice enthalpy correctly linked to attraction between IONS at least once ✓ e.g. Greater attraction between ions gives more negative LE	3	ANNOTATE WITH TICKS AND CROSSES, etc ORA throughout ALLOW pull for attraction IGNORE just 'greater force' (<i>could be repulsion</i>) IGNORE responses in terms of packing IGNORE electron density IGNORE lower/higher LE 				
	Total	12					

C	Quest	ion	Answer	Marks	Guidance
2	(a)	(i)	Time for concentration (of reactant) to fall to half original value ✓	1	ALLOW time for concentration to fall by half DO NOT ALLOW concentration of product to fall by half ALLOW mass OR amount as alternative to concentration ALLOW time for reactant/substance/atoms to decrease by half
		(ii)	 At least two half-lives correctly shown on graph AND half-life stated as approx. 54 s ✓ 1st order has a constant half-life ✓ 	2	 ALLOW half-life in range 50–56 s ALLOW half-life shown on graph Care: Initial concentration is ~5.8 and NOT 6.0 For constant half-life, ALLOW 'half lives are the same', 'two half-lives are 54 s', etc. ALLOW 2 tangents drawn, one at half conc of first AND evidence that gradient (≡ rate) halves
		(iii)	No change ✓	1	
	(b)	(i)	Tangent On graph, tangent drawn to curve at $t \sim 40$ s \checkmark Calculation of rate from the tangent drawn e.g. rate = $\frac{5.2}{116}$ = 0.045 OR 4.5 x 10 ⁻² \checkmark Units mol dm ⁻³ s ⁻¹ \checkmark Independent mark	3	Annotate tangent on graph Note: This mark can only be awarded from a tangent <i>ALLOW ECF for tangent drawn at different time from 40 s</i> <i>ALLOW</i> ±10% of gradient of tangent drawn <i>ALLOW</i> 2 SF up to calculator value <i>ALLOW</i> trailing zeroes, e.g. 0.04 for 0.040 IGNORE '' sign for rate Note: IF candidate calculates rate via ln 2 method (shown in (ii), consult with TL)

C	Question		Answer		Guidance
2	(b)	(ii)	$k = \frac{\text{answer to (b)(i)}}{3.45} \checkmark$ units: s ⁻¹ \checkmark Independent mark	2	From 0.045, $k = \frac{0.045}{3.45} = 0.013$ ALLOW concentration range 3.4–3.5 ALLOW use of unrounded calculator answer from (b)(i) even if different from answer given on (b)(i) answer line <i>Many will keep this value in calculator for (b)(ii)</i> ALLOW $k = \ln 2/t_{1/2} = 0.693$ /half life from (a)(iii) For 54 s, $k = 0.693/54 = 0.013$ ALLOW 2 SF up to calculator value
	(c)		water is in excess OR concentration of H₂O is very large/does not change ✓	1	IGNORE water does not affect the rate
			Tota	l 10	

Q	uest	ion	Answer	Marks	Guidance
3	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 16.8 with 'no units', award 5 marks	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
					ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout
			At equilibrium, $n(I_2) \text{ OR } [I_2(g)]$ = 4.00 x 10 ⁻³ - 1.70 x 10 ⁻³ = 2.30 x 10 ⁻³ (mol / mol dm ⁻³) \checkmark n(HI) OR [HI(g)] = 2 x 1.70 x 10 ⁻³ = 3.40 x 10 ⁻³ (mol / mol dm ⁻³) \checkmark		For all parts, ALLOW numerical answers from 3 significant figures up to the calculator value ALLOW omission of trailing zeroes, i.e. 3.40 as 3.4 but final numerical answer for K_c must be to 3 SF
			$(\kappa_{\rm c} =) \frac{(3.40 \times 10^{-3})^2}{3.00 \times 10^{-4} \times 2.30 \times 10^{-3}} \checkmark \qquad \text{IGNORE } \kappa_{\rm c} = \frac{[\text{HI}]^2}{[\text{H}_2] [\text{I}_2]}$		ALLOW ECF using incorrect values for [I ₂] AND [HI] BUT [H ₂] in K_c expression must be 3.00 x 10 ⁻⁴ (given in Q)
			= 16.8 (3 SF required) ✓		ALLOW ECF from incorrect K_c expression for calculation to 3 SF and units
			no units 🗸		For 'no units' ALLOW 'none' (ORA) OR '—' DO NOT ALLOW space to be left blank
					Common errors:Use of 1.70×10^{-3} for $n(HI)$ (no factor of x 2) $K_c = 4.19$ (3SF) and no units:4 marksUse of K_c expression used is upside down $K_c = 0.0597$ (3SF) and no units:4 marks
					No square for $[HI]^2$ $K_c = 4930$ and dm ³ mol ⁻¹ 4 marks Note: different ECF units

Q	uest	ion			An	swer		Marks	Guidance					
3	(b)	(i)	i.e. all three o	for $H_2(g)$ columns of $H_2(g)$,	AND I ₂ (correct I ₂ (g) and	g) AND H	ticked II(g) two marks √√ prrect one mark √	2	DO NOT ALLOW more than one box ticked in a column (response is a CON)					
				(ii)			(ii)		action is e :	xotherm	nic OR Δι	H is negative ✓	1	Link to ∆ <i>H</i> /exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
		()	AND		endent (DR <i>K</i> _c is r	not changed by		ALLOW K_c is only changed by temperature IGNORE same number of moles on both side					
							Total	9						

(Questic	n Answer	Marks	Guidance
4	(a)		5	ANNOTATE WITH TICKS AND CROSSES, etc
		HC <i>l</i> is a strong acid AND HC/O is a weak acid \checkmark HC <i>l</i> : pH = -log 0.14 = 0.85 (2 DP required) \checkmark		ALLOW HC <i>l</i> completely dissociates AND HC <i>l</i> O partially dissociates ALLOW HC <i>l</i> \rightarrow H ⁺ + C <i>l</i> AND HC <i>l</i> O \rightleftharpoons H ⁺ + C <i>l</i> O ⁻
		HC/O: CHECK THE ANSWER ON ANSWER LINE		IGNORE HC/ is a stronger acid than HC/O IGNORE HC/ produces more H ⁺
		IF answer = 4.14, award all three calculation marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
		$K_{a} = 10^{-7.43} \text{ OR } 3.7 \text{ x } 10^{-8} \text{ (mol dm}^{-3)} \checkmark$ $[\text{H}^{+}] = \sqrt{K_{a} \times [\text{HCIO}]} \text{ OR } \sqrt{K_{a} \times [\text{HA}]}$ $\text{OR } \sqrt{K_{a} \times 0.14} \text{ OR } \sqrt{3.7 \text{ x } 10^{-8} \text{ x } 0.14} \checkmark$		ALLOW 2 SF to calculator value: $3.715352291 \times 10^{-8}$, correctly rounded IGNORE 'HC <i>l</i> ' if it is clear that it is a 'slip'
		pH = 4.14 (2 DP required) ✓		Always ALLOW calculator value irrespective of working as number may have been kept in calculator.
				<i>Note</i> : <i>pH</i> = 4.14 is obtained from all three values above
				From no square root, pH = 8.28. Worth K_a mark only

G	Question		Answer	Marks	Guidance
4	(b)		$2Al + 6CH_3COOH \longrightarrow 2(CH_3COO)_3Al + 3H_2 \checkmark$	2	IGNORE state symbols ALLOW correct multiples, e.g.: $Al + 3CH_3COOH \longrightarrow (CH_3COO)_3Al + 1.5H_2$ ALLOW any unambiguous formula for $(CH_3COO)_3Al$, <i>i.e.</i> $(CH_3CO_2)_3Al$, $Al(CH_3CO_2)_3$, $(CH_3COO^-)_3Al^{3+}$, etc. Note: IF charges are shown, they must be correct with both – and 3+ shown
			$2Al + 6H^{+} \longrightarrow 2Al^{3+} + 3H_2 \checkmark$		ALLOW multiples, e.g.: Al + $3H^+ \longrightarrow Al^{3+} + 1.5H_2$
	(c)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.6(0), award 2 marks	2	
			$[H^{+}] = \frac{K_{w}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{[OH^{-}]} \text{ OR } \frac{1.0 \times 10^{-14}}{0.4(0)}$ OR 2.5 x 10 ⁻¹⁴ (mol dm ⁻³) \checkmark		ALLOW alternative approach using pOH: $pOH = 0.4(0) \checkmark$ $pH = 14 - 0.40 = 13.6(0) \checkmark$
			Correctly calculates pH = $-\log 2.5 \times 10^{-14} = 13.6(0) \checkmark$		ALLOW ECF from [H ⁺] derived using <i>K</i> _w and [OH [−]] BUT DO NOT ALLOW an acid pH. ALLOW one or more decimal places

C	Question		Answer	Marks	Guidance
4	(d)	(i)		7	ANNOTATE WITH TICKS AND CROSSES, etc
			A buffer solution minimises pH changes \checkmark on addition of small amounts of acid/H ⁺ or alkali/OH ⁻ /base \checkmark		ALLOW resists pH changes ALLOW buffer solutions maintains a nearly/virtually constant pH DO NOT ALLOW a response that implies that the pH is actually constant, e.g. does not change pH; maintains pH
			 HCOOH \Rightarrow H ⁺ + HCOO ⁻ \checkmark Equilibrium sign essential		DO NOT ALLOW COOH ⁻ OR CHOOH OR COOH DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻
			For effect of acid and alkali, ALLOW wrong carboxylic acid (e.g. CH ₃ COOH) OR HA; ALLOW CHOOH for acid (effectively ECF) ALLOW COOH ⁻ for base	2	Duality of written communication, QWC marks are for explaining how the equilibrium system allows the buffer solution to control the pH on addition of H ⁺ and OH [−]
			ALLOW responses based on COOH \Rightarrow H ⁺ + COO ⁻ DO NOT ALLOW other incorrect formula, e.g. CH ₃ OOH		
			Added alkali HCOOH reacts with added alkali/base/OH [−] OR added alkali/OH [−] reacts with H ⁺ ✓		ALLOW HA OR weak acid reacts with added alkali
			QWC : Equilibrium shifts forming HCOO ⁻ OR H ⁺ OR (HCOOH) Equilibrium \rightarrow right \checkmark		DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. HCOOH \Rightarrow H ⁺ + HCOO ⁻ is absent
			Added acid HCOO [−] reacts with added acid/H ⁺ ✓		ALLOW A ⁻ OR conjugate base reacts with added acid IGNORE salt reacts with added acid
			QWC : Equilibrium shifts forming HCOOH OR (HCOOH) Equilibrium \rightarrow left \checkmark		DO NOT ALLOW this mark if there is no equilibrium system shown, e.g. HCOOH \Rightarrow H ⁺ + HCOO ⁻ is absent

G	luest	ion	Answer	Marks	Guidance
4	(d)	(ii)	HCOOH reacts with NaOH forming HCOO ⁻ /HCOONa OR HCOOH + NaOH → HCOONa + H ₂ O ✓ Equilibrium sign allowed (Some) HCOOH/(weak) acid remains OR HCOOH/(weak) acid is in excess ✓	6	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW just 'methanoate/HCOO ⁻ forms' formulae or names of reactants also required ALLOW HCOOH + $OH^- \rightarrow HCOO^- + H_2O \checkmark$ IGNORE conjugate base/salt forms IGNORE HCOOH has been partially neutralised
			CalculationCHECK THE ANSWERIF answer = 3.99, award all four calculation	alculatior	n marks
			n(HCOOH) OR [HCOOH] = 0.24(0) (mol / mol dm ⁻³) \checkmark $n(\text{HCOO}^{-}) \text{ OR [HCOO}^{-}] \text{ OR [HCOONa]}$ = 0.4(00) (mol / mol dm ⁻³) \checkmark		Note: There must be a clear statement that 0.24 and 0.4 apply to moles or concentrations of HCOOH and HCOO ⁻ . DO NOT ALLOW these values if unlabelled
			$[H^+] = \mathcal{K}_a \times \frac{[\text{HCOOH}]}{[\text{HCOO}^-]} \checkmark$		ALLOW HA/acid and A ⁻ /salt for HCOOH and HCOO ⁻
			pH = −log [H ⁺] = −log(1.70×10 ⁻⁴ × $\frac{0.24}{0.4}$) = 3.99 ✓		DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer
			OR use of Henderson–Hasselbalch equation: $pH = pK_a + \log \frac{[HCOO^-]}{[HCOOH]}$ OR $pH = -\log K_a + \log \frac{[HCOO^-]}{[HCOOH]} \checkmark$		ALLOW HA/acid and A ⁻ /salt for HCOOH and HCOO ⁻ ALLOW pH = $pK_a - \log \frac{[HCOOH]}{[HCOO^-]}$ OR pH = $-\log K_a - \log \frac{[HCOOH]}{[HCOO^-]}$
			= 3.77 + 0.22 = 3.99 ✓		ALLOW = 3.77 – (-0.22) = 3.99 DO NOT ALLOW ECF for this mark: 3.99 is the ONLY correct answer
			Total	22	

G	Quest	ion	Answer	Marks	Guidance
5	(a)		$2Fe + 3Cl_2 \longrightarrow 2FeCl_3 \checkmark$	1	ALLOW 2Fe + $3Cl_2 \longrightarrow Fe_2Cl_6$ ALLOW multiples, e.g. Fe + $1\frac{1}{2}Cl_2 \longrightarrow FeCl_3$ IGNORE state symbols DO NOT ALLOW 2Fe + $3Cl_2 \longrightarrow 2Fe^{3+} + 6Cl^-$
	(b)		Fe^{3+} + $3OH^- \longrightarrow Fe(OH)_3 \checkmark$	1	IGNORE state symbols ALLOW $[Fe(H_2O)_6]^{3^+} + 3OH^- \longrightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$ ALLOW $[Fe(H_2O)_6]^{3^+} + 3OH^- \longrightarrow Fe(OH)_3 + 6H_2O$
	(c)	(i)	$2[Fe(H_2O)_6]^{3+} + Zn \longrightarrow 2[Fe(H_2O)_6]^{2+} + Zn^{2+}$ All chemical species correct (IGNORE e ⁻ for 1st mark) \checkmark Balancing with '2' in front of both Fe complex ions \checkmark	2	IGNORE state symbols For 1 mark, ALLOW balancing if (aq) species have been used instead of complex ions: $2Fe^{3^+} + Zn \longrightarrow 2Fe^{2^+} + Zn^{2^+}$
		(ii)	redox ✓	1	ALLOW reduction AND oxidation CARE: possible confusion with (d)(ii)
	(d)	(i)	Formula of E as $[Fe(CN)_6]^{3-}$ shown as product in equation \checkmark Correct balanced equation: $[Fe(H_2O)_6]^{3+} + 6CN^- \longrightarrow [Fe(CN)_6]^{3-} + 6H_2O \checkmark$ Notice different charges on complex ions: LHS 3+, RHS 3– state symbols not required	2	ALLOW equations with KCN, i.e.: $[Fe(H_2O)_6]^{3^+} + 6KCN \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ $[Fe(H_2O)_6]^{3^+} + 6K^+ + 6CN^- \rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ ALLOW ECF for an equation showing formation of $[Fe(CN)_6]^{4^-} \text{ from } [Fe(H_2O)_6]^{2^+}:$ $[Fe(H_2O)_6]^{2^+} + 6CN^- \longrightarrow [Fe(CN)_6]^{4^-} + 6H_2O$ Notice different charges on complex ions: LHS 2+, RHS 4–
		(ii)	ligand substitution ✓	1	ALLOW ligand exchange OR ligand replacement CARE: possible confusion with (c)(ii)

(Question		Answer	Marks	Guidance
5	(e)		F and G : $\begin{bmatrix} \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$	3	ALLOW any attempt to show bidentate ligand Bottom line is the diagram below. Image: Structure of the structure between two Os in ligand even if slightly different IGNORE structure between two Os in ligand even if slightly different Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper. For bond into paper, ALLOW: Image:
	(f)		FeO₄ ^{2−} ✓	1	Formula AND charge needed ALLOW other 2– ions containing: Fe AND O AND Fe has ox no of +6 i.e. ALLOW $Fe_2O_7^{2^-}$, $Fe_3O_{10}^{2^-}$, etc.
			Total	12	

C	Quest	ion	Answer	Marks	Guidance
6	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 218, award 2 marks -256 = $(6 \times 205) + S(C_6H_{12}O_6) - (6 \times 214 + 6 \times 70)$ OR $S(C_6H_{12}O_6) = -256 - (6 \times 205) + (6 \times 214 + 6 \times 70)$ OR $-256 + 474 \checkmark$ = 218 (J K ⁻¹ mol ⁻¹) \checkmark	2	IF there is an alternative answer, check to see if there is any ECF credit possible. Note that ALL 4 S values must be used for ECF
		(ii)	$\Delta G = +2879 - 298 \times -0.256 \checkmark$ = (+)2955 (kJ mol ⁻¹) ✓	2	ALLOW 3 SF: 2960 to calculator value of 2955.288 Award 1 mark for the following: • ΔG = 2890 to calculator value of 2885.4 25 °C used rather than 298 K: • ΔG = 79200 to calculator value of 79167 ΔS not converted from J K ⁻¹ mol ⁻¹ to kJ K ⁻¹ mol ⁻¹ • expressions with one transcription error: e.g. +2897 instead of +2879; 0.265 instead of 0.256 • ΔG = 2814.036 use of 218 rather than -256 • Use of 'answer to (a)(i)'/1000 (by ECF)
		(iii)	ΔH is positive OR $\Delta H > 0$ AND ΔS is negative OR $T\Delta S$ is negative OR $\Delta S < 0$ OR $T\Delta S < 0$ AND ΔG will always be positive OR $\Delta G > 0 \checkmark$	1	ALLOW ΔH is endothermic for ΔH is +ve ALLOW ΔG will never be less than 0 DO NOT ALLOW S or H i.e. change in entropy, ΔS and change in enthalpy ΔH are essential

Question	Answer	Marks	Guidance
6 (b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.12 x 10 ¹⁷ g, award 2 marks	2	
	amount of CO ₂ removed = $3.4 \times 10^{18} \times 6 / 2879$ OR 7.09×10^{15} (mol) \checkmark		ALLOW 2 SF (7.1 \times 10 ¹⁵ (mol)) up to calculator value of 7.085793678, correctly rounded
	mass of CO ₂ = 44.0 \times 7.09 \times 10 ¹⁵ = 3.12 \times 10 ¹⁷ g \checkmark		ALLOW 2 SF $(3.1 \times 10^{17} \text{ g})$ up to calculator value, correctly rounded Correct units required for 2nd mark e.g. 3.12×10^{14} kg; 3.12×10^{11} tonne ALLOW 1 mark for 3.1×10^{17} with no unit ALLOW ECF from incorrectly calculated amount of CO ₂ provided that both 3.4×10^{18} AND 2879 have been used e.g. Omission of x 6 gives 1.181×10^{15} mol CO ₂ and 5.196×10^{16} g CO ₂
	Total	7	

C	luest	ion	Answer	Marks	Guidance
7	(a)		 Definition The e.m.f. (of a half-cell) compared with a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ / 1M AND pressure of 101 kPa OR 100 kPa ✓ 	2	 ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR 10⁵ Pa OR 1 bar
	(b)		2.71 V ✓	1	IGNORE any sign
	(c)	(i)	$Al + 3Fe^{3+} \longrightarrow Al^{3+} + 3Fe^{2+} \checkmark$ $2Al + 3I_2 \longrightarrow 2Al^{3+} + 6I^{-} \checkmark$ $2I^{-} + 2Fe^{3+} \longrightarrow I_2 + 2Fe^{2+} \checkmark$	3	Correct species AND balancing needed for each mark IGNORE state symbols ALLOW equilibrium sign (i.e. assume reaction is to right) ALLOW correct multiples IF there are more than three equations • mark a maximum of three equations • mark incorrect equations first
		(ii)	High activation energy OR slow rate ✓	2	
			Conditions not standard OR concentrations not 1 mol dm ⁻³ \checkmark		DO NOT ALLOW 'standard conditions' are different

C	Questio	n Answer	Marks	Guidance
7	(d)	ANNOTATE WITH TICKS, CROSSES, etc	4 max	ORA throughout Minimum identification for system 6 is Cl^- Minimum identification for system 7 is ClO^- Note : Cl_2 is unsuitable as an identifier as it features in both system 6 and system 7 IGNORE reference to gaining and losing electrons; oxidation and reduction
		 General (2 marks – assumed to be acid) (<i>E</i> of) 7 (<i>ClO</i>⁻/<i>Cl</i>₂) is more positive/less negative (than 6) OR <i>E</i>_{cell} is (+)0.27 (V) OR <i>E</i>_{cell} is positive ✓ 		Note : identification of systems 6 and 7 could be from use of relevant half equations/overall equation ALLOW 'greater' or 'higher' for 'more positive'
		 6 (Cl₂/Cl⁻) moves to left AND 7 (ClO⁻/Cl₂) to right ✓ 		ALLOW correct eqn: $Cl^- + ClO^- + 2H^+ \rightarrow Cl_2 + H_2O$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2Cl^- + 2ClO^- + 4H^+ \rightarrow 2Cl_2 + 2H_2O$
				Note : IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction
		 In alkali (3 marking points), H⁺ in 7 (ClO⁻/Cl₂) is removed by/reacts with OH⁻/alkali √ 		
		 (<i>E</i> of) 7 (<i>ClO</i>⁻/<i>Cl</i>₂) less positive/more negative (than 6) ✓ 6 (<i>Cl</i>₂/<i>Cl</i>⁻) moves to right AND 7 (<i>ClO</i>⁻/<i>Cl</i>₂) to left ✓ 		ALLOW correct eqn: $Cl_2 + H_2O \rightarrow Cl^- + ClO^- + 2H^+$ IGNORE uncancelled electrons ALLOW multiples, e.g. $2Cl_2 + 2H_2O \rightarrow 2Cl^- + 2ClO^- + 4H^+$ Note : IF equilibrium shifts are correct, IGNORE incorrectly balanced equation but CON an equation in wrong direction

Que	stion	Answer	Marks	Guidance
(e) (i)	IO_3^- has removed/gained electrons from Sn ²⁺ OR IO_3^- has been reduced to I_2 / reduced to 0 OR IO_3^- has oxidised Sn ²⁺ \checkmark	1	ALLOW IO_3^- is the oxidising agent as I has been reduced DO NOT ALLOW just IO_3^- has been reduced DO NOT ALLOW I is the oxidising agent
	(ii)	$5Sn^{2+} + 2IO_3^- + 12H^+ \longrightarrow I_2 + 5Sn^{4+} + 6H_2O$ All chemical species correct with no extra chemical species \checkmark Correct balancing with no electrons shown \checkmark	2	ALLOW correct multiples eg $2\frac{1}{2}$ Sn ²⁺ + IO ₃ ⁻ + 6H ⁺ $\rightarrow \frac{1}{2}$ I ₂ + $2\frac{1}{2}$ Sn ⁴⁺ + 3H ₂ O IGNORE e ⁻ for 1st marking point
		Total	15	

C	Quest	ion	Answer	Marks	Guidance
8	(a)		(1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁸ 4s ² ✓ (1s ² 2s ² 2p ⁶)3s ² 3p ⁶ 3d ⁸ ✓	2	ALLOW 4s before 3d, i.e. $1s^22s^22p^63s^23p^64s^23d^8$ IF candidate has used subscripts OR caps, DO NOT ALLOW when first seen but credit subsequently, i.e. $1s_22s_22p_63s_23p_63d_84s_2$ $1s^22s^22p^63s^23p^64s^23D^8$ For Ni ²⁺ ALLOW 4s ⁰ in electron configuration
	(b)	(i)	Acts as a base OR alkali AND removes/accepts a proton (from DMGH) ✓	1	
		(ii)	4 ✓	1	
		(iii)	(Each) DMG has 1– charge which cancel 2+ charge on Ni ²⁺ ✓	1	ALLOW $2 \times -1 + 2 = 0$ For Ni ²⁺ , ALLOW Ni has an oxidation number of (+)2 ALLOW Ni ²⁺ cancelled out by 2 DMG ⁻ ALLOW 'balanced' for cancelled
		(iv)	$\begin{array}{c} H_{3}C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1	ALLOW OH for O—H ALLOW CH ₃ — DO NOT ALLOW —H—O

Question	Answer	Marks	Guidance
8 (C)	Marks are for correctly calculated values amount of Ni	7 max	 ANNOTATE WITH TICKS AND CROSSES, etc Note: The answers incorporate three different approaches to solving this problem. IF candidate attempts calculation via another method, consult your TL ECF answer above ALLOW numerical answers 280.8 – 280.9 (ALLOW 281) IGNORE further figures ALLOW numerical answers 155.0 – 155.1 (ALLOW 155) IGNORE further figures ASSUME that 'unlabelled 1.12 g' applies to H₂O unless contradicted ALLOW numerical answers 125.7 – 125.9 (ALLOW 126) ECF answer above 7 as whole number is required Note: Mark for 7 can be credited within formula BUT there must be some relevant working to derive ~7, e.g. 6.99 ALLOW numerical answers 96.0 – 96.4 (ALLOW 96)
	Total	13	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

