

Please write clearly in	ı block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature	I dealara this is my own w	ork	
	I declare this is my own w		

GCSE CHEMISTRY

Higher Tier Paper 2

Wednesday 10 June 2020

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

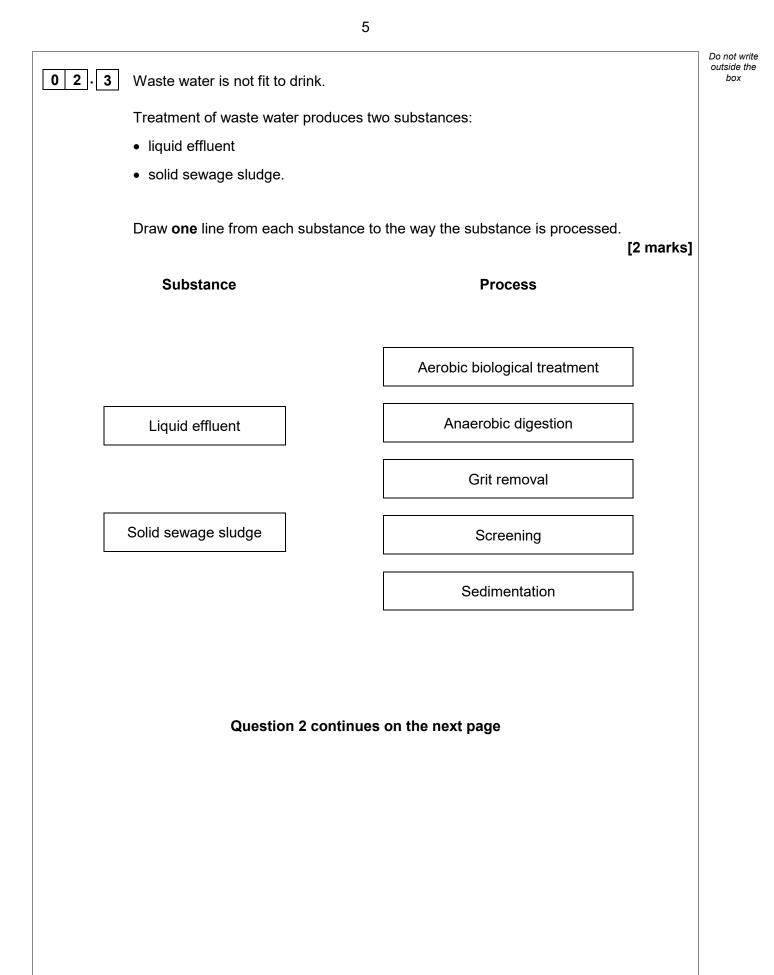
Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

IB/M/Jun20/E12

0 1	This question is about chemical analysis.	Do not write outside the box
	A student tested copper sulfate solution and calcium iodide solution using flame tests.	
	This is the method used.	
	1. Dip a metal wire in copper sulfate solution.	
	2. Put the metal wire in a blue Bunsen burner flame.	
	3. Record the flame colour produced.	
	4. Repeat steps 1 to 3 using the same metal wire but using calcium iodide solution.	
0 1.1	What flame colour is produced by copper sulfate solution? [1 mark]	
01.2	Calcium compounds produce an orange-red flame colour. The student left out an important step before reusing the metal wire. The student's method did not produce a distinct orange-red flame colour using calcium iodide solution. Explain why.	
	[2 marks]	



0 1.3	The student added sodium hydroxide solution to:	Do not write outside the box
	copper sulfate solution	
	calcium iodide solution.	
	Give the results of the tests.	
	[2 marks]	
	Copper sulfate solution	
	Calcium iodide solution	
0 1.4	To tost for sulfate ions the student added dilute hydrophlaric said to	
	To test for sulfate ions the student added dilute hydrochloric acid to copper sulfate solution.	
	Name the solution that would show the presence of sulfate ions when added	
	to this mixture. [1 mark]	
	ניוומואן	
0 1.5	To test for iodide ions the student added dilute nitric acid to calcium iodide solution.	
	Name the solution that would show the presence of iodide ions when added	
	to this mixture.	
	Give the result of the test.	
	[2 marks]	
	Solution	
	Result	
		8

02	This question is about water.	Do not write outside the box
02.1	In the UK, potable (drinking) water is produced from different sources of fresh water. Explain how potable water is produced from fresh water. [4 marks]	
0 2 . 2	A different country has:very little rainfall	
	a long coastline	
	 plentiful energy supplies. 	
	Suggest one process this country could use to obtain most of its potable water. [1 mark]	

Turn over ►

Table 1 shows information about the disposal of processed solid sewage sludge in the UK in 1992 and in 2010.

Table 1

Veer	Mass of	processed solid	l sewage sludge	e in millions of k	kilograms
Year	Used as fertiliser			Other methods	Total
1992	440	130	90	338	998
2010	1118	9	260	26	1413

0 2 . 4 Calculate the percentage of processed solid sewage sludge that was burned in 2010.

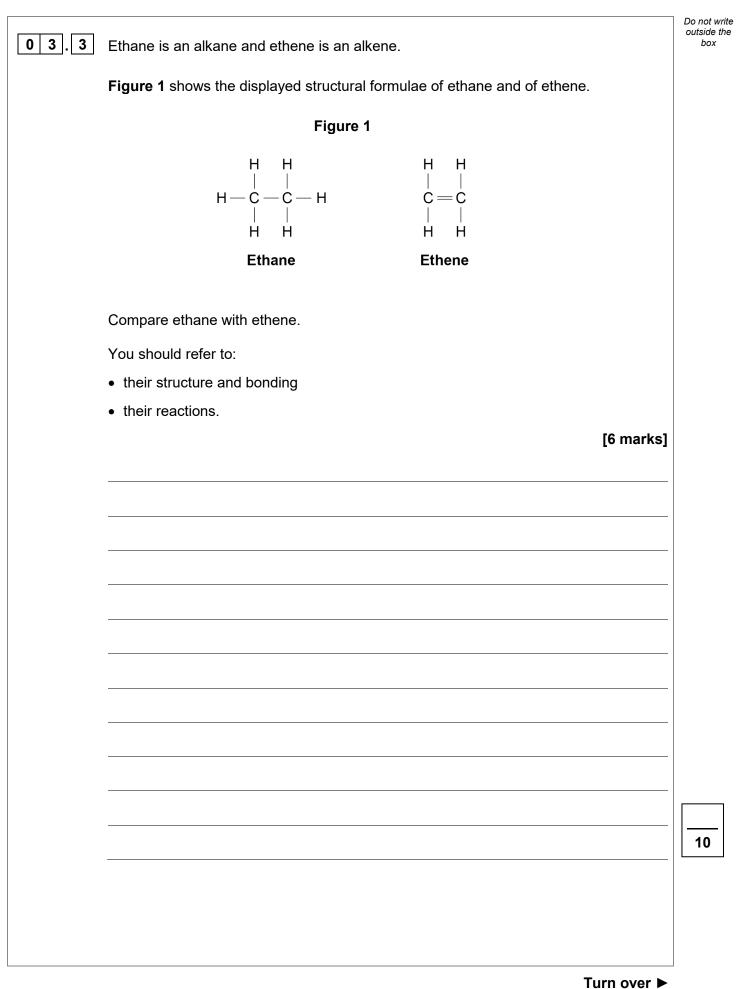
Give your answer to 3 significant figures.

Use Table 1.

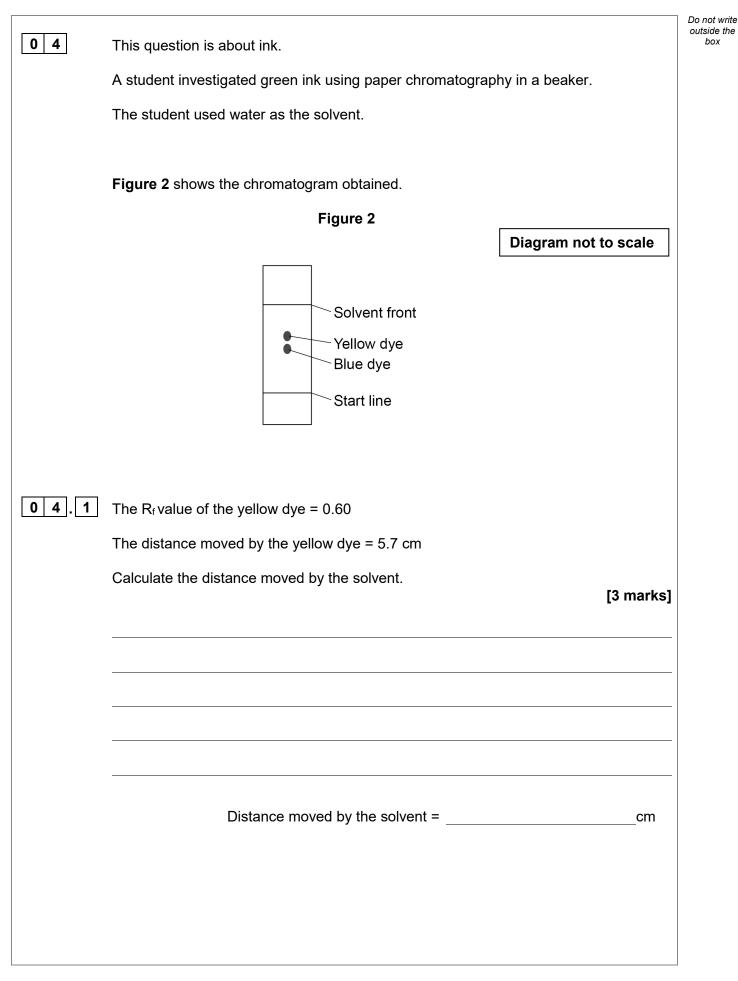
[3 marks]

%

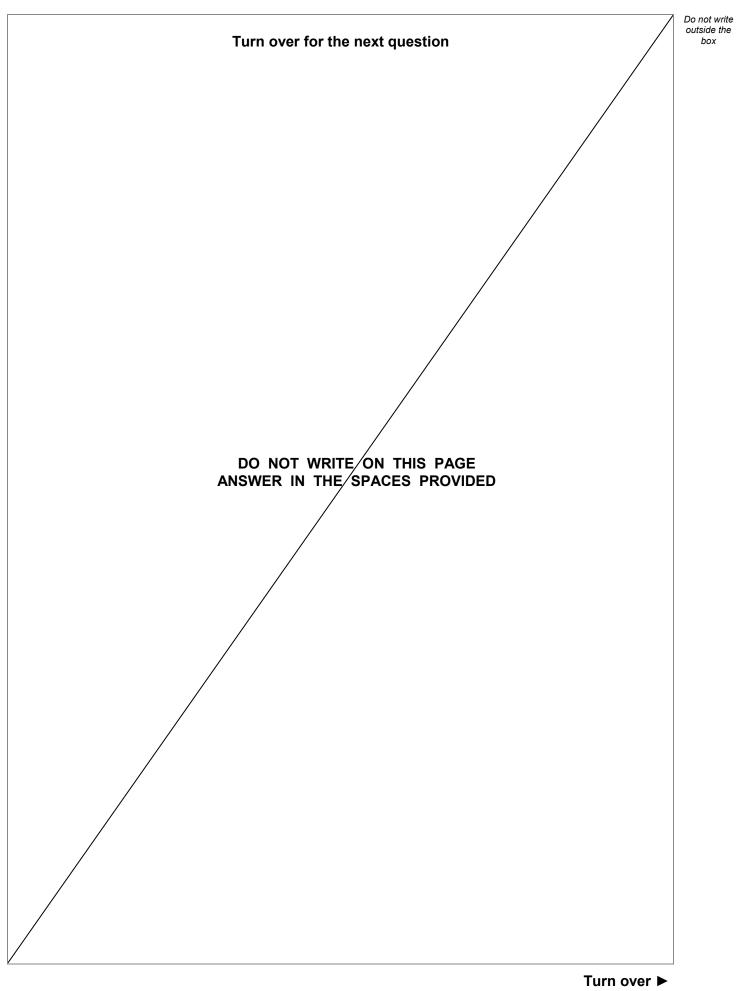
Percentage (3 significant figures) =


Do not write outside the box

02.5	Suggest one reason why the total mass of processed solid sewage sludge increased between 1992 and 2010. [1 mark]	Do not write outside the box
02.6	Between 1992 and 2010 the proportion of processed solid sewage sludge used as fertiliser increased.	
	Suggest two reasons why. 1	13

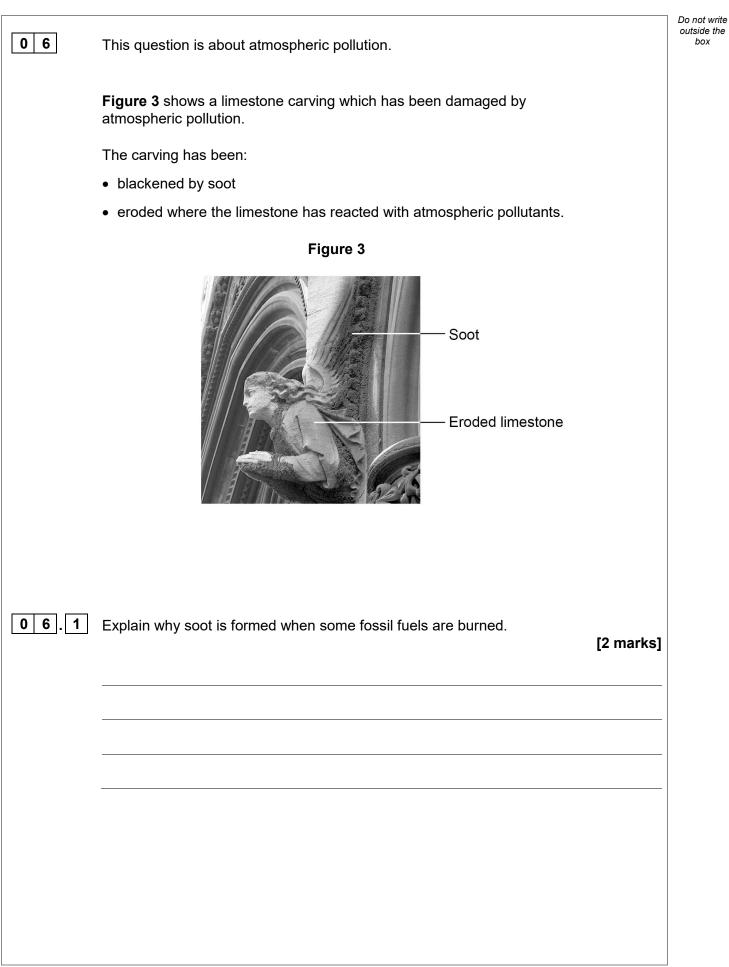


0 3	This question is about hydrocarbons.		Do not w outside box	
	Hexane and hexene are hydrocarbons co	ontaining six carbon atoms in each molecule.		
	Hexane is an alkane and hexene is an alkene.			
03.1	Draw one line from each hydrocarbon to the formula of that hydrocarbon. [2 marks]			
	Hydrocarbon	Formula		
		C ₆ H ₈		
	Hexane	C ₆ H ₁₀		
		C ₆ H ₁₂		
	Hexene	C ₆ H ₁₄		
		C ₆ H ₁₆		
03.2	Bromine water is added to hexane and to What would be observed when bromine we Hexane	water is added to hexane and to hexene? [2 marks]]	
	Hexene		-	
			-	



04.2	The green ink contains more than two compounds.	Do not outsia bo
	Suggest one reason why only two spots are seen on Figure 2 . [1 mark]	
04.3	On the student's chromatogram, the yellow and blue spots are very close together.	
	Which two ways could increase the distance between the spots? [2 marks]	
	Tick (\checkmark) two boxes.	
	Allow the solvent front to travel further.	
	Dry the chromatogram more slowly.	
	Use a different solvent.	
	Use a larger beaker.	
	Use a larger spot of green ink.	
0 4 . 4	The manufacturers of the green ink always use the same proportions of yellow dye and blue dye.	
	Suggest one reason why. [1 mark]	

04.5	The R _f value of a dye depends on:		Do not write outside the box
	 the solubility of the dye in the solvent 		
	 the attraction of the dye to the paper. 		
	Which will $\mbox{definitely}$ produce a smaller R_f value if the solvent and paper are both changed?		
	Tick (✓) one box.	[1 mark]	
	The dye is less soluble in the new solvent and less attracted to the new paper.		
	The dye is less soluble in the new solvent and more attracted to the new paper.		
	The dye is more soluble in the new solvent and less attracted to the new paper.		
	The dye is more soluble in the new solvent and more attracted to the new paper.		8


Table 2 shows informati these materials.	on about plates Table 2		eter made from
ſ		Food plate materi	al
_	Paper	Polymers	Ceramics
Raw material	Wood	Crude oil	Mined clay
Number packaged in 10 dm ³ cardboard box	500	100	50
Average number of times used	1	400	1000
Biodegradable?	Yes	No	No
Recyclable?	Yes	Yes	No
1 Table 2 does not show if Suggest two pieces of in a complete life cycle ass 1 2	nformation abou sessment (LCA)	t energy usage wh for the three food	plate materials

Do not write outside the box

0 5.2	Evaluate the use of these materials for making food plates.	Do not write outside the box
	You should use features of life cycle assessments (LCAs).	
	Use Table 2.	
	[4 marks]	
	· · · · · · · · · · · · · · · · · · ·	
0 5.3	Describe how ceramic food plates are produced from clay. [2 marks]	
		8

06.2	Fossil fuels are burned in car engines.	Do not write outside the box
	Explain how reducing the amount of sulfur in fossil fuels reduces the erosion of limestone.	
	[4 marks]	
0 6.3	Oxides of nitrogen are atmospheric pollutants which are formed in car engines. Explain why oxides of nitrogen are formed in car engines.	
	[2 marks]	
		8
	Turn over for the next question	

0 7 This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

Table 3 shows information about the first three carboxylic acids in this homologous series.

Name	Formula	pH of a 0.01 mol/dm ³ solution
Methanoic acid		2.91
Ethanoic acid	CH₃COOH	3.39
	CH ₃ CH ₂ COOH	3.44

07.

1

Complete Table 3.

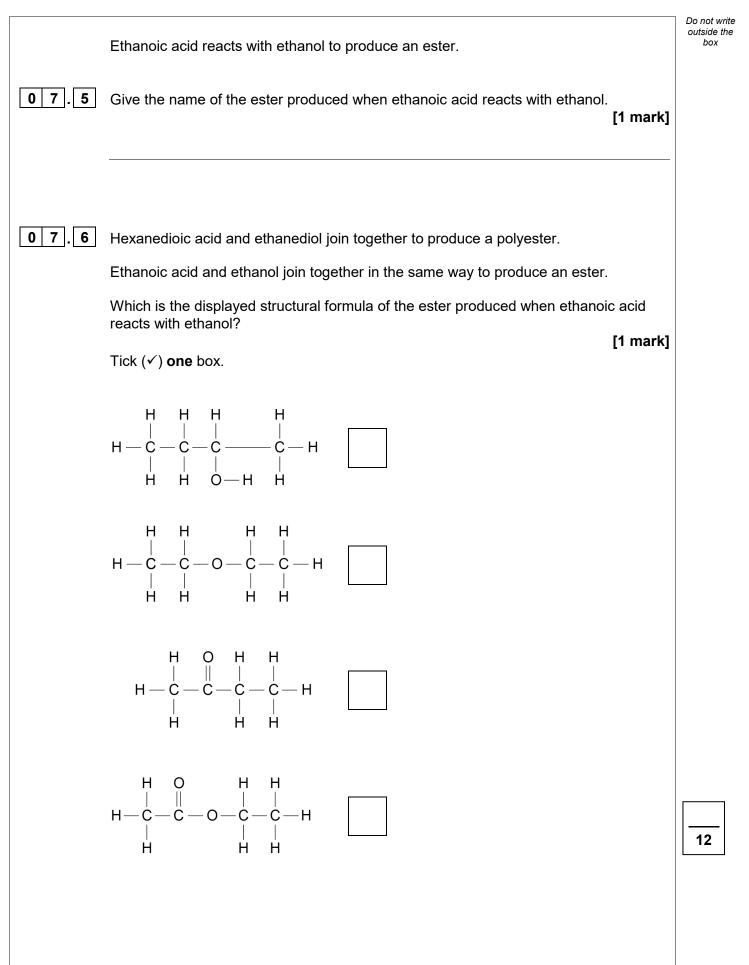
[2 marks]

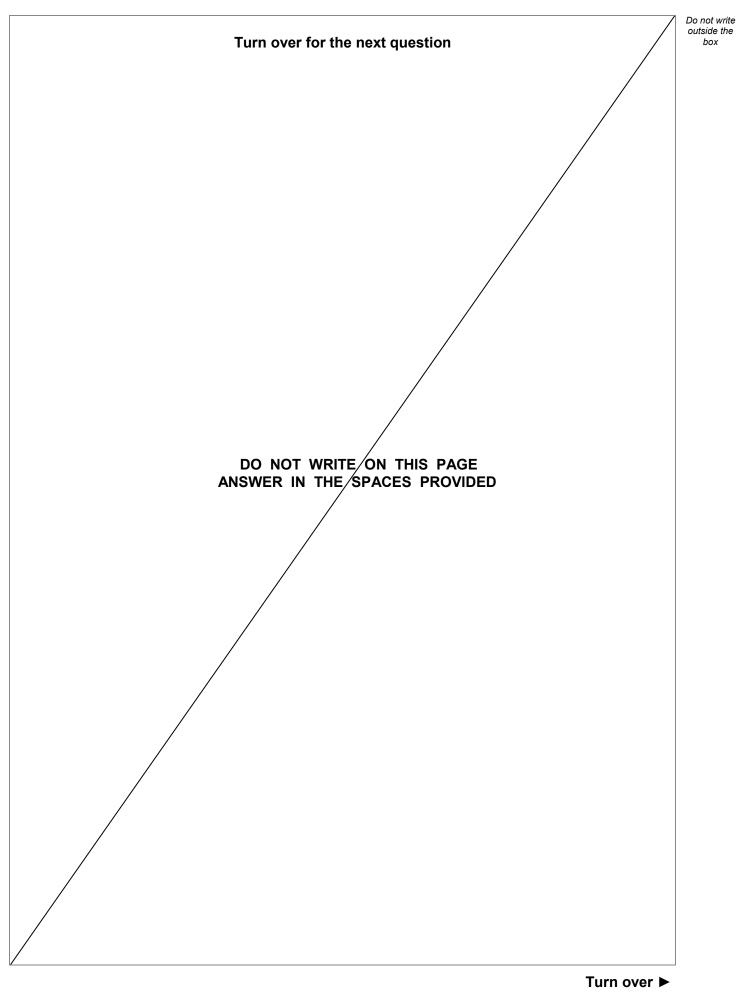
0 7 . 2 Ethanoic acid ionises in water.

The equation for the reaction is:

 $CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$

Explain how the equation shows that ethanoic acid is a weak acid.


[2 marks]


		Do not
0 7.3	A student adds a solution of ethanoic acid to zinc carbonate in an open flask on a balance.	outsic bc
	Explain what happens to the mass of the flask and its contents during the reaction. [3 marks]	
0 7.4	The student compares the rates of the reaction of zinc carbonate with:	
	 0.01 mol/dm³ methanoic acid 0.01 mol/dm³ ethanoic acid. 	
	The rate of the reaction with methanoic acid is greater than the rate of the reaction with ethanoic acid.	
	Explain why.	
	You should refer to ions in your answer.	
	Use Table 3. [3 marks]	

Turn over ►

0 8 This question is about the rate of the reaction between hydrochloric acid and calcium carbonate.

A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

This is the method used.

- 1. Pour 40 cm³ of hydrochloric acid into a conical flask.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- 3. Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 30 seconds for 180 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.

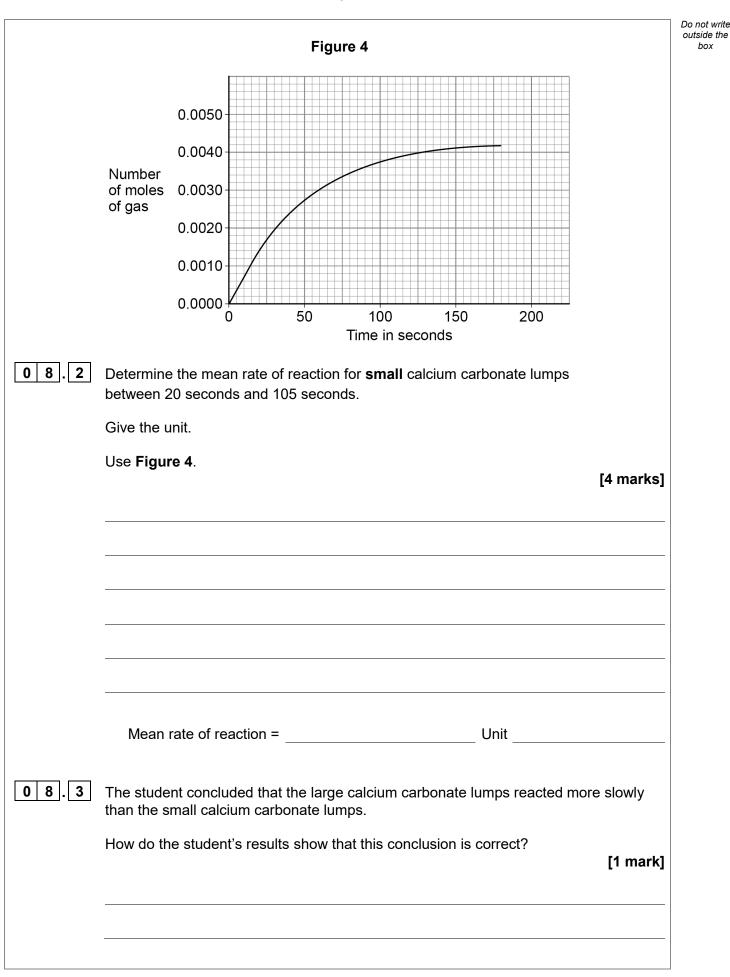
The student calculated the number of moles of gas from each volume of gas measured.

Table 4 shows the student's results for large calcium carbonate lumps.

Table 4

Time in seconds	Number of moles of gas
0	0.0000
30	0.0011
60	0.0020
90	0.0028
120	0.0034
150	0.0038
180	0.0040

The student plotted the results for small calcium carbonate lumps on Figure 4.


Complete Figure 4.

You should:

- plot the data for large calcium carbonate lumps from Table 4
- draw a line of best fit.

[3 marks]

Turn over ►

	The difference in the rates of reaction of large lumps and of small lumps of calcium carbonate depends on the surface area to volume ratios of the lumps.	Do not write outside the box
	Figure 5 shows a cube of calcium carbonate.	
	Figure 5	
	0.5 cm	
08.4	Calculate the surface area to volume ratio of the cube in Figure 5 .	
	Give your answer as the simplest whole number ratio. [3 marks]	
	Surface area : volume =	
08.5	A larger cube of calcium carbonate has sides of 5 cm	
	Describe how the surface area to volume ratio of this larger cube differs from that of the cube shown in Figure 5 . [1 mark]	
		12

		-

	This supplies is should also	Do not write outside the box
0 9	This question is about algae.	507
	A student:	
	 placed algae in water containing dissolved carbon dioxide shope bright light on the algae 	
	 shone bright light on the algae. 	
	Gas bubbles were collected as the algae photosynthesised.	
09.1	Describe a test that would identify the gas collected.	
	Give the result of the test.	
	[2 marks]	
	Test	
	Result	
09.2	Glucose is produced when algae photosynthesise.	
	Name two naturally occurring polymers produced from glucose.	
	[2 marks]	
	and	
	Question & continues on the next news	
	Question 9 continues on the next page	

	Figure 6 shows the displayed structural formula of an amino acid called glycine.
	Figure 6
	H H O N-C-C H H O-H
09.3	How many functional groups are there in the molecule in Figure 6 ? [1 mark] Tick (✓) one box.
	1 2 3 4
09.4	Glycine reacts by condensation polymerisation to produce a polypeptide and one other substance.
	Name the other substance produced. [1 mark]
09.5	Scientists think that algae may have used gases in Earth's early atmosphere.
	Algae need an element to produce the molecule in Figure 6 which is not present in water or carbon dioxide.
	Which two gases from Earth's early atmosphere could have provided this element? [2 marks]

		Donot
09.6	The development and function of algae are controlled by a naturally occurring polymer.	Do not write outside the box
	Figure 7 represents the shape and structure of this polymer.	
	Figure 7	
	Describe the shape and structure of this polymer. [3 marks]	
		11
	Turn over for the next question	
[Turn over ►	

1 0	This question is about a reversible reaction.	Do not write outside the box
	The reaction between solutions of iron(III) ions (Fe ^{$3+$}) and thiocyanate ions (SCN ⁻) is reversible.	
	The ionic equation for the reaction is:	
	$\begin{array}{rcl} & \mbox{Fe}^{3+}(\mbox{aq}) & + & \mbox{SCN}^{-}(\mbox{aq}) & \rightleftharpoons & \mbox{FeSCN}^{2+}(\mbox{aq}) \\ \mbox{Colour of solution:} & \mbox{yellow} & \mbox{colourless} & \mbox{red} \end{array}$	
	The colour of the equilibrium mixture is orange at room temperature.	
10.1	Give the name of the solvent used to dissolve the ions in this reaction. [1 mark]	
10.2	A few drops of a colourless solution containing a high concentration of thiocyanate ions (SCN ⁻) are added to the orange equilibrium mixture. Explain the colour change observed. [3 marks]	
	[0	

A water bath is set up at a temperature above room temperature.	
When a test tube containing the orange equilibrium mixture is placed in the bath, the mixture becomes more yellow.	water
Explain what this shows about the energy change for the forward reaction.	[3 marks]

Do not write outside the

box

10.4	Explain why a change in pressure does not affect the colour of the equilibrium
	mixture. [2 marks]
1 0 . 5	Other metal ions form coloured equilibrium mixtures with thiocyanate ions.
	Which metal ion could form a coloured equilibrium mixture with thiocyanate ions?
	Tick (✓) one box. [1 mark]
	Al ³⁺
	Co ²⁺
	Mg ²⁺
	Na⁺
	END OF QUESTIONS

1 0.3

10

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 AQA and its licensors. All rights reserved.
	2 0 6 G 8 4 6 2 / 2 H

