Pearson Edexcel

Mark Scheme (Results)
January 2021
Pearson Edexcel International GCSE In Mathematics B (4MB1)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4MB1_01_2021_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
awrt - answer which rounds to
eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes
1	$\frac{45}{8}-\frac{30}{8}$		2	M1 - both terms with the same common denominator - allow $\frac{45}{8}-\frac{15}{4}=\frac{15}{8}$
	$\frac{15}{8}$	$1 \frac{7}{8}$		A1 must-see sufficient working and given as a mixed number only (either their final answer in their working or on the answer line)
				Total 2 marks
2	$\begin{aligned} & 100-52-20(=28) \text { or } \\ & 100-42-20(=38) \end{aligned}$		2	M1 allow $(52+20+42)-100$ oe correct method to either get the $\%$ of year 8 who did not walk or the $\%$ of year 7 who did, for example, in words would need to see ' 48% students are in year 8 and as 20% walked therefore 28% did not walk'
	$42-(100-52-20)$ or $52-(100-42-20)$	14		A1
				Total 2 marks
3	$\frac{360}{180-176} \text { or } 180(n-2)=176 n$		2	M1
		90		A1
				Total 2 marks
4	$10-(-2 \times 3)$		2	M1
		16		A1
				Total 2 marks

Question	Working	Answer	Mark	Notes
$\mathbf{5}$		$1-\mathrm{x}=-1$ or $-4+3 \mathrm{x}=\mathrm{x}$ or $\mathrm{x}+\mathrm{x}=4$		
$\mathbf{6}$				

Question	Working	Answer	Mark	Notes	
9					

Question		Working	Answer	Mark	Notes
			n is an integer so $\mathrm{n}+\frac{1}{2}$ is not		
					Total 3 marks
11	(a)		$(\mathrm{x}+1)(\mathrm{x}-1)$	1	B1
	(b)	$\left(2^{18}+1\right)\left(2^{18}-1\right) \mathrm{p}=2^{18}-1$ or $\mathrm{q}=2^{18}+1$		2	M1 ft (a) substituting 2^{18} as x in either factor or one value correctly stated, or p and q correctly stated the wrong way round
			$\begin{aligned} & \mathrm{p}=262143 \\ & \mathrm{q}=262145 \end{aligned}$		A1 (allow in terms of powers of 2)
					Total 3 marks
12		$2795,2805,1595$ or 1605		3	M1 at least 1 of the listed values seen
		$\frac{2795}{1605}$			$\begin{aligned} & \text { M1 must be } 2795 \leq \text { LB < } 2800 \text { and } \\ & 1600<\text { UB } \leq 1605 \end{aligned}$
			1.74		A1 must-see correct calculation. awrt 1.74 (1.74143302 ...) but not left as an exact value
					Total 3 marks
13		$\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}} \times \frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}+\sqrt{11}}$		3	M1 multiplying numerator and denominator by $\sqrt{13}+\sqrt{11}$
		$\frac{13+\sqrt{143}+\sqrt{143}+11}{13+\sqrt{143}-\sqrt{143}-11}$			M1 dep attempt to expand top and bottom, condone a maximum of one error condone $\frac{(\sqrt{13}+\sqrt{11})^{2}}{(\sqrt{13})^{2}-(\sqrt{11})^{2}}=\frac{24+2 \sqrt{143}}{2}$

Question	Working	Answer	Mark	Notes	
		$\frac{24+2 \sqrt{143}}{2}$			

Question	Working	Answer	Mark	Notes
				218×10^{54} seen in working then followed by
				2.18×10^{56} either in working or on the answer

Que	Working	Answer	Mark	Notes
18	$\begin{array}{ll} \hline 40 x+24 y=16 \text { OR } & 15 \mathrm{x}+9 \mathrm{y}=6 \\ 9 \mathrm{x}-24 \mathrm{y}=12 & 15 \mathrm{x}-40 \mathrm{y}=20 \\ (+\quad 49 \mathrm{x}=28 & (-) \quad 49 \mathrm{y}=-14 \end{array}$ OR $x=\frac{2-3 y}{5} \text { and } \quad 3\left(\frac{2-3 y}{5}\right)-8 y=4$ $\begin{aligned} & \text { OR } \\ & x=\frac{8 y+4}{3} \text { and } \quad 5\left(\frac{8 y+4}{3}\right)+3 y=2 \end{aligned}$ OR $y=\frac{2-5 x}{3} \quad \text { and } \quad 3 x-8\left(\frac{2-5 x}{3}\right)=4$ OR $y=\frac{3 x-4}{8} \quad \text { and } \quad 5 x+3\left(\frac{3 x-4}{8}\right)=2$		4	M1 - allow one arithmetic or sign slip only Correct answer with no working scores no marks
		$x=\frac{4}{7} \text { or } y=-\frac{2}{7}$		A1 (oe - awrt $x=0.57(1428 \ldots)$) or $\mathrm{y}=-$ $0.28(57142 \ldots$) to at least two decimal places)
	$\begin{aligned} & 5 \times " \frac{4}{7} "+3 y=2 \text { or } 3 \times " \frac{4}{7} "-8 y=4 \text { or } \\ & 5 x+3 \times "-\frac{2}{7} "=2 \text { or } 3 x-8 \times "-\frac{2}{7}=4 \end{aligned}$			M1dep on M1 Substituting their value into one of the correct equations (give bod if sign slip when substituting value) or correct use of elimination or substitution for other variable.
		$x=\frac{4}{7} \text { and } y=-\frac{2}{7}$		A1 - must see exact values at some point
				Total 4 marks

Question	Working	Answer	$\begin{gathered} \hline \text { Mark } \\ 5 \end{gathered}$	Notes
21	$\angle \mathrm{ABC}=90$			B1 $\angle \mathrm{ABC}=90$ may be seen on diagram
	$\begin{aligned} & \angle \mathrm{BAE}+\angle \mathrm{AED}=180 \\ & \text { or } \angle \mathrm{BAC}+\angle \mathrm{CAE}+\angle \mathrm{AED}=180 \end{aligned}$			M1 stating that $\angle \mathrm{BAE}+\angle \mathrm{AED}=180$ or their values for $\angle \mathrm{BAE}+\angle \mathrm{AED}$ (even if incorrect) add to 180
	$\begin{aligned} & \angle \mathrm{ACB}+90+80+120+180=540 \\ & \text { or } \angle \mathrm{BAC}=20 \text { and } \angle \mathrm{ACB}+90+\angle \mathrm{BAC}=180 \end{aligned}$			M1 dependent on both previous marks fully correct method to find $\angle \mathrm{ACB}$
				B1 any correct unknown angle stated together with correct corresponding reason
		70 with reason		A1 correct answer of 70 together with all correct reasons for their method - see below
				Total 5 marks

Method 1

- $\angle \mathrm{ABC}=90$ (angles in a semi-circle or right-angled triangle in a semi-circle)
- $\angle \mathrm{BAE}+\angle \mathrm{AED}=180$ (co-interior angles or allied angles)
- $180+90+80+120+\angle \mathrm{ACB}=540$ (angles in a pentagon) leading to 70

Method 2

- $\angle \mathrm{ABC}=90$ (angles in a semi-circle or right-angled triangle in a semi-circle)
- $\angle \mathrm{AED}=100$ (opposite angles in a cyclic quadrilateral) then $\angle \mathrm{CAE}=60$ (either opposite angles in a cyclic quadrilateral or angles in a quadrilateral) or vice-versa (e.g. find $\angle \mathrm{CAE}$ then $\angle \mathrm{AED}$)
- $\angle \mathrm{BAC}+\angle \mathrm{CAE}+\angle \mathrm{AED}=180$ (co-interior angles or allied angles) leading to $\angle \mathrm{BAC}=20$
- $\angle \mathrm{ACB}+90+20=180$ (angles in a triangle) or $\angle \mathrm{ACB}+90+80+120+(20+60+100)=540$ (angles in a pentagon) leading to 70

Candidate might extend line AE to a point F (to the right of E) and say, ' $\angle \mathrm{AED}=100$ so $\angle \mathrm{DEF}=80$ ($\underline{\text { angles on a straight } \underline{\text { line }} \text {)' and then ' } \angle \mathrm{DEF}=}$ $\angle \mathrm{BAE}=80^{\prime}$ (corresponding angles) (so may not use co-interior/allied angles)
Also note that the correct answer can come from assuming that both $\angle \mathrm{DEA}$ and $\angle \mathrm{BAE}=90-$ this can score a maximum of B1M1M0B1A0 Symbols may be used instead of words (e.g. \angle for angle, Δ for triangle, etc.)

Question		Working	Answer	$\frac{\text { Mark }}{2}$	
22	(a)	$(\mathrm{V}=) \frac{1}{3} \times \pi \times 10^{2} \times 20$			M1
			2090		A1 - allow exact value $\frac{2000}{3} \pi$ or 2090 or better - allow both 2093 (2093.333... from using 3.14) and 2094 (2094.395... using π)
	(b)	$\left(\frac{1}{2}\right)^{3}\left(=\frac{1}{8}\right)$ or $\frac{1}{3} \times \pi \times 5^{2} \times 10$		3	M1 $\frac{1}{8}$ may be seen as a ratio
		"2090" $\times\left(1-\right.$ " $\frac{1}{8}$ " $)$ or "2090"- $\frac{1}{3} \times \pi \times 5^{2} \times 10$			M1dep allow for " 2090 " $-\frac{1}{3} \times \pi \times 5^{2} \times 10$
			1830		A1 - allow exact value $\frac{1750}{3} \pi$ (= 1832.595715...) or awrt 1830 (most likely to be from 1828 to 1833 to 4 sf)
					Total 5 marks
23		Bar from 10 to 15 height 6.4 cm drawn	Bar from 10 to 15 height 6.4 cm drawn	5	B1
		e.g. $20 \times \frac{4 \times 36}{10 \times 8}$ or $20 \times \frac{7.2 \times 0.8}{1.6 \times 2}$ or $20 \times \frac{2 \times 36}{5 \times 8}$			M1 fully correct method to find the frequency of 15-17 bar.
			36		A1 (correct answer implies previous mark)
		184-20-80-"36" ($=48$)			M1dep on previous M mark
			48 in table and Bar from 17 to 25 height 2.4 cm drawn		A1 including frequency density axis labelled (1 cm square is 2.5)
					Total 5 marks

| Question | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 4}$ | (a) | $\left(6^{2}-2\right)-3$ | 2 | M1 |

Question		Working	Answer	Mark	Notes
25	(a)	$\begin{aligned} & \cos \theta=\frac{17}{32.3} \text { or } \cos \theta=\frac{34^{2}+32.3^{2}-32.3^{2}}{2 \times 34 \times 32.3} \\ & (\theta=58.24313614 \ldots) \end{aligned}$ or $\begin{aligned} & \sin \left(\frac{1}{2} \alpha\right)=\frac{17}{32.3} \text { or } \cos \alpha=\frac{32.3^{2}+32.3^{2}-34^{2}}{2(32.3)(32.3)} \\ & (\alpha=63.51372772 \ldots) \end{aligned}$		6	M 1 where θ is one of the base angles of the isosceles triangles. Where α is the angle at the vertex of the isosceles triangles
		$\mathrm{AN}^{2}=34^{2}+16.15^{2}-2 \times 34 \times 16.15 \times \cos " 58.2^{\prime \prime}$ or $\mathrm{AN}^{2}=32.3^{2}+16.15^{2}-2 \times 32.3 \times 16.15 \times \cos " 63.5^{\prime \prime}$			M1dep on previous M mark
		AN = 29			A1 (for reference: $28.96243256 \ldots$ if exact values) $28.817854 \ldots$ if using $63,29.09921 \ldots$ if using 64 , 28.958570... if using 63.5, $28.950296 \ldots$ if using $58.2,28.894033 \ldots$ if using 58 so check carefully that value of AN is accurate with angle used
		$\mathrm{MN}=17$			B1 although exact allow awrt 17 e.g. may come from $\mathrm{MN}^{2}=16.15^{2}+16.15^{2}-2 \times 16.15 \times 16.15 \times \cos (63.51 \ldots)$
		"29"+"17"			M1 dep on both previous M1 marks
			46		A1 (correct working only) awrt 46 (for reference: 45.96243256...)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

