

SPECIMEN

Advanced Subsidiary GCE

BIOLOGY

Unit F212: Molecules, Biodiversity, Food and

Health

Specimen Paper

Candidates answer on the question paper.

Additional Materials:

Ruler mm/cm Scientific calculator **F212 QP**

Time: 1 hour 45 mins

Candidate Name	
Centre Number	Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do **not** write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Where you see this icon you will be awarded marks for the quality of written communication in your answer.
- You may use a scientific calculator.
- You are advised to show all the steps in any calculations.
- The total number of marks for this paper is 100.

FOR EX	AMINER	'S USE
Qu.	Max.	Mark
1	19	
2	15	
3	13	
4	16	
5	18	
6	9	
7	10	
Total	100	

This document consists of 17 printed pages and 3 blank pages.

SP (SLM) T12103 © OCR 2007 QAN 500/2269/6

OCR is an exempt Charity

[Turn Over

Answer all	the c	questions.
------------	-------	------------

	Describe what happens d					
(b) (Complete the table below,				ysaccharides.	[
		gum arabic	amylose	cellulose	glycogen	
	branched structure	yes		no		
	heteropolysaccharide	yes		no		
	found in animals/plants	plants		plants		
	function in organism	healing cuts			energy store	
à	Acacia senegal is a speci allowed to graze on both in high protein content.					
	i) Describe how you wo	uld test an exti	ract of the seed	I pods for prote	ein.	

(ii)	Describe how you could compare the reducing sugar content of the leaves with that of the seed pods.
	In your answer you should make clear how the steps in the process are sequenced.
•••••	
	[8]

Total [19		Suggest why it might their cattle feed on the the cattle.	be better for people living in areas where the true trees and fallen seed pods and then obtain the	ee grows to let ir nutrition from
Total [19				
Total [19				
Total [19	•••••			
Total [19			<u> </u>	
Total [19				[:
				Total [1

2	DNA and	d RNA are nucleic acids.
	(a) (i)	Describe the structure of a DNA nucleotide .
		In your answer you should spell the names of the molecules correctly.
		You may use the space below to draw a diagram if it will help your description.
		[3]
	(ii)	Describe how the two nucleotide chains in DNA are bonded together.
		[4]
	(b) St	ate three ways in which the structure of DNA differs from that of RNA.
	2	
	3	
		[3]
	••••	
		[Turn over

(c) An antibody is an example of a protein molecule, which has a specific 3-dimensional shape. Fig. 2.1 shows the structure of an antibody molecule.

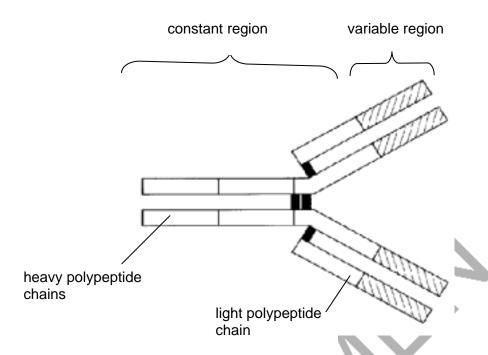


Fig 2.1

(י)	Outline now the structure of an antibody molecule is related to its function.
	[3]
(ii)	Suggest why the base sequence in the genes for human antibodies is more similar to
,	that found in a chimp than to that found in a mouse.
	[2]
	Total: [15]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

[Turn over

3 The fungus, yeast, contains the enzyme catalase.

Catalase speeds up the decomposition of hydrogen peroxide, a toxic metabolic product, to oxygen and water.

$$2 H_2O_2 \rightarrow 2 H_2O + O_2$$

A student decided to investigate the activity of catalase using the apparatus shown in Fig. 3.1.

The total volume of gas collected was recorded every 20 seconds.

The results are shown in Fig. 3.2.

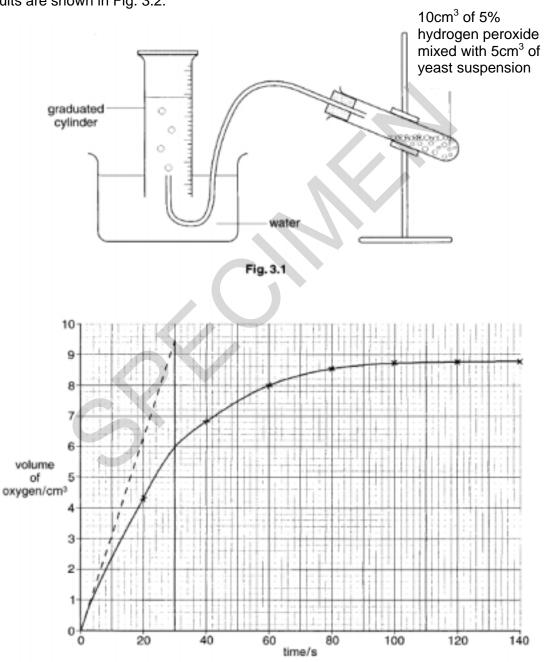


Fig. 3.2

The rate of	decomposition	can he	calculated	using th	e formula:
THE TALE OF	u c composition	can be	calculated	นอแน แ	ie iuiiiuia.

rate of decomposition = volume of oxygen collected time taken for collection

(a)	Calculate	the rate o	f decomposit	ion over the t	first 30 seconds.
(u,	Calculate	tile rate o	i ucconiposit		ili ol ol olobiid

Show your working and give your answer in cm³ min⁻¹.

	Answer: =cm ³ min ⁻¹ [2]
(b)	The initial rate of decomposition is the rate measured within the first few seconds. Using the dashed line in Fig. 3.2, the initial rate of decomposition is calculated to be 19 cm³min⁻¹.
	Explain why the initial rate of reaction is greater than the rate you calculated in (a).
	[3]

[Turn over

	Explain why these cultures are often maintained at the optimum temperature for proteir production and not at a temperature above the optimum.
	\mathscr{F} In your answer you should make clear how the structure and activity of enzymes relates to the effects described.
-	
•	
•	
•	
•	
	Total: [

BLANK PAGE

- **4** A group of students carried out some fieldwork to investigate the diversity of insects in three habitats:
 - a field of barley
 - a field of wheat
 - the vegetation under a hedge.

Their results are shown in Table 4.1. Table 4.1 also shows how they used their data to calculate Simpson's Index of Diversity (D) for each habitat.

$$D = 1 - (\Sigma (n/N)^2)$$

where N = the total number of insects found, and n is the number of individuals of a particular species.

		umber of individuals of each species in each habitat		
	barley	wheat under		
species	field	field	hedge	
а	32	4	0	
b	78	0	1	
С	0	126	2	
d	0	5	12	
е	0	0	8	
f	0	0	9	
g	0	25	3	
h	0	10	3	
i 🊁	0	0	2	
j	0	0	5	
k	86	56	0	
	0	0	7	
species richness	3	6	10	
total number of				
insects (N)	196	226	52	
Simpson's Index				
of Diversity (D)		0.61	0.86	

Table 4.1

(a)	State what is meant by the term species nonness.		
		[1]	
(b)	(i) Calculate the value for Simpson's Index of Diversity (D) for the barley field.		
	Show your working and write your answer in the shaded box in Table 4.1.		

	(ii) Using the data in Table 4.1, suggest why the value of Simpson's Index of Diversity (D) for the vegetation under the hedge is so much higher than that for the wheat field.
	[3]
(c)	Describe how the students may have determined the numbers of individuals of each species in each habitat.
	[5]
رم/	Studios of hindiversity are an integral part of an equirenmental impact assessment (EIA)
(d)	Studies of biodiversity are an integral part of an environmental impact assessment (EIA). (i) Discuss the role of an EIA as part of a local planning decision.
	(ii) Suggest why some conservationists might object to these studies.
	[2]
	Total: [16] [Turn over

_	The lease and	D 11		: 1			- 4 4 1	:1.	
ວ	The leopard,	Pantnera	paraus,	ısaı	arge	member	or the	cat tamii	٧.

(a) Complete the following table to show the full classification of the

	Kingdom		
		. Chordata	
	Class	Mammalia	
		Carnivora	
	Family	Felidae	
	Genus		
		. pardus	
			[5]
(b)	The leopard belongs to a kingdom in white eukaryotic.	ch all members are eukaryotic. Plants a	
	Name two other kingdoms that contain eu	karyotic organisms.	
	1		
	2		[2]
(c)	Historically, all organisms were classified into	just two kingdoms. In 1988 a five-kingdom	
	system of classification was accepted. proposed.	In 1990 a three domain system	n was
	Discuss, with reference to the Prokaryotes universally accepted and why they change over		are not

....

(d)	Sta	aphylococcus aureus is a species of bacterium that is found on the skin.
	(i)	Describe how variation may arise within a species of bacterium such as S. aureus.
		[1]
	(ii)	Suggest why such variation alters the characteristics of the individual organism.
		[2]
(e)	Dis	scuss the difficulties that variations arising in S. aureus may cause to the medical profession.
		[4]
		Total: [18]

- **6** The Human Immunodeficiency Virus (HIV) is spread by exchange of body fluids between an infected person and an uninfected person. This often occurs as a result of unprotected sexual intercourse.
 - Fig. 6.1 shows the percentage of people infected with HIV in different parts of the world at the end of 2002.

North America 0.5 – 1% Caribbean -1 – 5 %	Western Europe & Central & 0.5 – 1% North Africa & Middle East 0.5 – 1%	
Latin America 1 – 5%	Sub-Saharan Africa 15 – 39%	Australia & New Zealand 0.1%

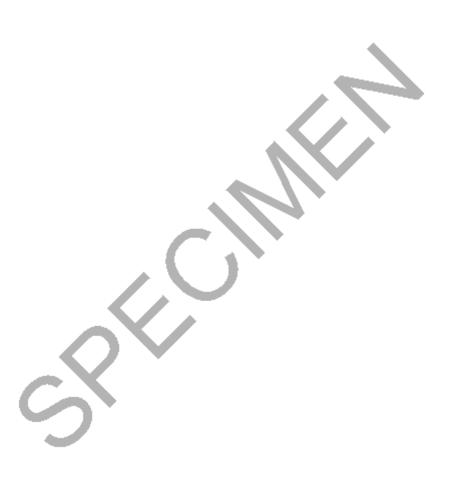
Fig. 6.1

(a)	much of Europe.
	Suggest three reasons why the percentages are so much higher in Sub-Saharan Africa.
	[2

(i	i) Explain why it is useful to collect information, such as that shown in Fig. 6.1.
	[4]
-	At present there is no cure for HIV / AIDS. Researchers have found that some people in Africa are not infected despite continual exposure to the disease. HIV uses a specific cell surface receptor known as the CD4 receptor to enter a human cell.
	Suggest how this information and knowledge of the Human Genome might be used to help reduce the spread of HIV.
	ro.
	[2] Total: [9]

The black rhinoceros, *Diceros bicornis*, is an endangered species whose numbers have fallen to approximately 3000 in the past thirty years. For this reason, the species was placed on Appendix I of the Convention on International Trade in Endangered Species (CITES) agreement. Since the black rhinoceros has been placed on the appendix, numbers have

stal	oilised, or even increased, in several countries.
(a)	(i) Explain the term endangered species.
	[2]
	(ii) Suggest two reasons why the black rhinoceros is endangered.
	1
;	<u> </u>
	State two ways in which the CITES agreement is helping to save endangered species, such as the black rhinoceros.
	1
;	2
	[2]
	Outline the potential benefits to agriculture of maintaining the biodiversity of wild animals and plants.
	[4] Total: [10]
	Paper total [100]


Copyright Acknowledgements:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2007

BLANK PAGE

