

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1CR and Science (Double Award) (4SD0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code 4CH1_1CR_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	copper		1
(b)	glucose/water		1
(c)	air		1
(d)	nitrogen/oxygen		1
(e)	copper		1
(f)	oxygen and sulfur	in either order	1
		(Total for Question 1	= 6)

Question number	Answer	Notes	Marks
2 (a)	Any two from the following: M1 contains 3 dyes M2 contains (dye) A M3 contains (dye) B M4 does not contain (dye) C / contains an unknown dye OWTTE		2
(b) (i)	(Ink 2) is insoluble (in solvent/water)	ALLOW does not contain (dye) A/B/C	1
(ii)	(repeat) using different solvent	ALLOW named alternative solvent eg alcohol/ethanol	1
(c)	M1 correct measurement of distance moved by spot AND correct measurement of distance moved by solvent M2 use and evaluation of R _f = <u>distance moved by spot</u> distance moved by solvent front M3 answer to 2 sig fig	ALLOW 5.4-5.6 ALLOW 7.9-8.1 Expected: <u>5.5</u> = 0.6875 8.0 = 0.69 ALLOW ECF from M1 M2 correct answer with no working scores 3	3

(Total for Question 2 = 7)

Question number		ion er	Answer	Notes	Marks
3	(a)		alkanes		1
	(b)	(i)	 A boiling point is the correct answer because fractional distillation depends on differences in boiling point B is not correct because fractional distillation does not depend on differences in density C is not correct because fractional distillation does not depend on differences in melting point D is not correct because fractional distillation does not depend on differences in solubility 		1
	(b)	(ii)	bitumen		3
			fuel for aeroplanes diesel		
			fuel for ships		
			surfacing roads gasoline		
			kerosene		
			1 mark for each correct line from boxes on left	If more than one line from a box on left do not award mark for that box	
	(c)		explanation including the following points:		2
			M1 (common impurity in fuels is) sulfur		5
			M2 sulfur burns/combusts/reacts (in air/oxygen) to form sulfur dioxide/SO $_{\rm 2}$		
			M3 sulfur dioxide/SO ₂ dissolves in/reacts with rain/water to form acid rain	If M2 M3 not scored ALLOW 1 mark for reference to sulphur dioxide/SO ₂ and acid rain	

Question number		ion er	Answer	Notes	Marks
3	(d)	(i)	cracking		1
		(ii)	M1 (catalyst) silica/alumina	ALLOW silicon dioxide/aluminium oxide ALLOW formulae	2
			M2 (temperature) 600-700 (°C)	ALLOW zeolite	
		(iii)	$C_{13}H_{28} \rightarrow C_8H_{18}$ +		
			M1 C ₃ H ₆ +	in either order ALLOW structural	2
			M2 C ₂ H ₄	formulae	
				ALLOW 1 mark for single product C₅H ₁₀	

(Total for Question 3 = 13)

Question number		ion Der	Answer		Notes	Marks
4	(a)	(i)	(hydrated) iron(III) oxide		REJECT incorrect oxidation states	1
		(ii)	M1 (barrier method involves) coating iron in paint/oil/grea	ase/plastic	ALLOW coating in named metal below iron in reactivity series eg tin	2
			M2 stops oxygen/air/water getti	ng to the iron	ALLOW stops iron reacting with oxygen/air/water	
	(b)	(i)	reading at start	20.5		
			reading at end	33.5 (1)		2
			volume of oxygen used in cm ³	13.0 (1)	CSQ on reading	
		(ii)	not all oxygen had reacted / ı (wool)	not enough iron	ALLOW not left for long enough/ OWTTE	1
	(c)		M1 calculation of volume oxyge	n used		3
			M2 correct expression for perce	ntage of oxygen		
			M3 correct evaluation			
			Example calculation:			
			M1 (35.5 – 20.0 =) 15.5			
			M2 (15.5 ÷ 80.0) x 100		ALLOW ECF from M1	
			M3 19.4(%)		ACCEPT 19.375/19.38	
					correct answer with no working scores 3	

(Total for Question 4 = 9)

	Question number	Answer	Notes	Marks
5	(a)	(thermal) decomposition (1)		1
	(b)	any two of the following:		2
		M1 (use the same) amount of metal carbonate	ALLOW mass	2
		M2 (use the same) sized pieces/surface area		
		M3 (use the same) volume of limewater	ALLOW amount	
		M4 (use same) size flame / distance of flame from boiling tube OWTTE		
	(c)	bubbles are air (from tube) / caused by air (expanding on heating)	ALLOW gas in tube expands (on heating)	1
	(d)	explanation including		
		M1 (when limewater turns milky/cloudy it) shows carbon dioxide produced		2
		M2 showing metal carbonate has reacted/decomposed	ALLOW carbon dioxide comes from carbonate (reacting/decomposing)	
	(e) (i)	M1 (from) green	IGNORE qualifiers eg	2
		M2 (to) black	light	
	(ii)	$CuCO_3 \rightarrow CuO + CO_2$	ALLOW products in either order	1

Question number	Answer	Notes	Marks
5 (f) (i)	M1 the lower the metal is (in the reactivity series)	ALLOW the less reactive a metal is	2
	M2 the more easily the (metal) carbonate reacts/decomposes	ALLOW the more easily the (metal) carbonate produces carbon dioxide	
		ALLOW references to the less time the (metal) carbonate takes to react/decompose	
		ALLOW references to the faster the (metal) carbonate reacts/decomposes	
		ACCEPT reverse arguments	
(ii)	repeat (the investigation) using different / other / more (metal) carbonates		1
(ii)	repeat (the investigation) using different / other / more (metal) carbonates	reacts/decomposes ACCEPT reverse arguments	

(Total for Question 5 = 12)

Question number		ion Der	Answer	Notes	Marks
6	(a)	(i)	$Zn + 2HCI \rightarrow ZnCl_2 + H_2$		2
			M1 all symbols and formulae correct		
			M2 correctly balanced	M2 DEP M1	
		(ii)	lighted splint (produces squeaky) pop		1
	(b)	(i)	52 (cm ³)	ALLOW 51.5-52.5	1
		(ii)	M1 vertical line from 15 cm ³ acid to graph line	ALLOW extra point drawn at 15 cm ³	2
			M2 volume hydrogen from graph multiplied by 2	ALLOW 68-70	
			OR M1 vertical line from 30 cm ³ acid to graph line M2 volume bydrogen from graph	ALLOW extra point drawn at 30 cm ³	
			Wiz volume nyurogen nom graph		
	(c)		explanation linking		3
			M1 more (acid) particles/(hydrogen) ions/H ⁺ in same volume	REJECT molecules once only ALLOW particles are closer together	
			M2 more (successful) collisions per second/unit time	ACCEPT more frequent collisions IGNORE more chance/probability of collision	
			M3 rate increases	ALLOW reaction is faster /speeds up	
				MAX 1 if refer to particles moving faster/having more energy	

6 (d)	explanation including		3
	In the ase decrease) surface area		
	M2 increase surface area by using smaller pieces of zinc		
	M3 more (successful) collisions per second/unit time (so rate increases)	ACCEPT more frequent collisions IGNORE more chance/probability of collision	
		M2 M3 ACCEPT reverse arguments	

(Total for Question 6 = 12)

Question number	Answer	Notes	Marks
7 (a)	description including		
	(formation of ions in lithium chloride involves)	ALLOW correct dot-and-	3
	M1 lithium (atom) losing electron	cross diagrams for ions	
	M2 chlorine (atom) gaining an electron		
	(formation of covalent bonds in hydrogen chloride involves)		
	M3 sharing a pair of electrons (one electron from each atom)	ALLOW correct dot-and- cross diagram showing shared pair in hydrogen chloride for M3	

7 (b)	explanation including five of the following points:		5
	(lithium chloride)		
	M1 giant (ionic) structure	ALLOW giant lattice	
	M2 strong (electrostatic) forces of attraction	ALLOW strong bonds	
	M3 between oppositely charged ions	ACCEPT positive and negative ions	
		lf any reference to molecules/atoms/covalent bonds/intermolecular forces/metallic bonds	
	(hydrogen chloride)	cannot score M2 M3 M6	
	M4 simple molecular structure		
	M5 weak intermolecular forces of attraction	ALLOW weak bonds between molecules	
	M6 more (heat/thermal) energy needed to overcome forces/break bonds in lithium chloride (than intermolecular forces in hydrogen chloride)	ACCEPT reverse argument	
	OWTE	If description/implication of breaking covalent bonds in hydrogen chloride cannot score M5 M6	

(Total for Question 7 = 8)

Question number	Answer	Notes	Marks
8 (a) (i)	explanation linking M1 (molecules/compounds) having same molecular formulae		2
	M2 but different structural/displayed formulae	ALLOW different structures ALLOW different arrangement of atoms	
(ii)	M1 displayed formula of but-1-ene H H H H C = C - C - C - H H H H	IGNORE bond angles	2
	M2 displayed formula of but-2-ene H H H H H H H H	ALLOW displayed formula of methylpropene H - C - H H - H	

Question number	Answer	Notes	Marks
8 (b) (i)	explanation linking M1 molecule is unsaturated as contains (carbon to carbon) double bond M2 molecule not a hydrocarbon as contains oxygen	ACCEPT does not contain hydrogen and carbon only	2
(ii)	addition		1
(iii)	$H CH_{3}$ $H COOCH_{3}$ n M1 correct repeat unit structure		2
	M2 extension bonds, brackets and n	n can be anywhere after bracket extension bonds do not have to go through brackets M2 DEP M1 or near miss	

Question number	Answer	Notes	Marks
8 (c) (i)	M1 calculation of mass of octane		5
	M2 calculation of Mr of C_8H_{18} and CO_2		
	M3 link between mass/mol C_8H_{18} and mass/mol CO_2		
	M4 calculation of mass CO_2 in g		
	M5 calculation of mass CO_2 in kg		
	Example calculation:		
	M1 50 x 700 = 35000 (g)		
	M2 M _r of C_8H_{18} = 114 and M _r CO ₂ = 44		
	M3 114g C ₈ H ₁₈ produces (8 x 44 =) 352 (g) CO ₂		
	M4 35000 g C ₈ H ₁₈ produces $\frac{35000 \times 352}{114}$ = 108070.2 (g) CO ₂ M5 = 108 (kg)	ALLOW 2 sig fig or more in M4 and M5	
	Alternative method using mol:		
	M1 50 x 700 = 35000 (g)		
	M2 M _r of C ₈ H ₁₈ = 114 and Mr CO ₂ = 44 M3 n (C ₈ H ₁₈) = 35000 = 307.0175 mol 114		
	so n (CO ₂) = 8 x 307.0175 = 2456.14 mol	ALLOW 2 sig fig or more in M3 M4 and M5	
	M4 mass CO ₂ = 2456.14 x 44 = 108070.2 (g)		
	M5 = 108 (kg)	MARK CSQ in both methods	
		correct answer without working scores 5	

(ii)	global warming/climate change	IGNORE greenhouse effect	1

(Total for Question 8 = 15)

Qu	estion unber	Answer	Notes	Marks
9 (a)	to keep out of contact/prevent reaction with air/oxygen/water/moisture	ALLOW they react with air/oxygen/water/moisture	1
(b) (i)	similarity: both fizz/move on surface/ produce flame	ALLOW both melt/form a ball/produce a gas/ produce hydrogen/form an alkaline solution	2
		difference caesium: faster/more violent reaction	ACCEPT reverse argument for potassium ALLOW caesium explodes	
	(ii)	2Cs + 2H ₂ O → 2CsOH + H ₂	ACCEPT fractions and multiples	2
		M1 all symbols/formulae correct		
		M2 correctly balanced	M2 DEP M1	
((c) (i)	a lid/cover		1
	(ii)	explanation linking either		2
		M1 stir solution		2
		M2 to obtain more accurate (maximum) temperature	ALLOW reference to even temperature throughout/ heat evenly distributed OWTTE	
		OR	0	
		M1 measure temperature of sodium hydroxide		
		M2 to check if different to/same as temperature of (hydrochloric) acid	ALLOW take an average of temperature of sodium hydroxide and temperature of (hydrochloric) acid for 2 marks	

Question number	Answer	Notes	Marks
9 (d) (i)	M1 correct temperature change/ \triangle T M2 correct substitution into Q = m x c x \triangle T M3 correct evaluation Example calculation: M1 \triangle T = (26.5 – 19.9) OR 6.6		3
(ii)	M2 Q = 100 x 4.2 x 6.6 M3 = 2800 (J) M1 answer to M3 from (i) ÷ 0.05 M2 correct evaluation in kJ/mol with negative sign	M2 ECF M1 M3 ECF M2 IGNORE any sign ALLOW 2770, 2772 correct answer without working scores 3	2
	expected answer M1 2800 ÷ 0.05 OR 56000 (J) M2 - 56 (kJ/mol)	2770 gives 55400 2772 gives 55440 negative sign required ACCEPT -55.4 ACCEPT -55.44 ACCEPT -55 correct answer without working scores 2	

(Total for Question 9 = 13)

Question number		on er	Answer	Notes	Marks
10	(a)	(i)	neutralisation	ALLOW acid - base	1
		(ii)	acid donates proton(s)/base accepts proton(s)	ALLOW metal oxide for base	1
	(b)	(i)	description including		5
			M1 appropriate use of at least three named pieces of apparatus		
			AND any four of the following points		
			M2 add copper(II) carbonate to (dilute sulfuric) acid (a spatula/little at a time and stir after each addition)		
			M3 until no more effervescence	ALLOW until no more reacts/dissolves ALLOW until in excess	
			M4 filter (to remove excess copper(II) carbonate/to obtain (copper(II) sulfate) solution)		
			M5 heat/warm filtrate/(copper(II) sulfate) solution until crystals start to appear (solution saturated) OWTTE		
			M6 filter to obtain (the saturated) solution	IGNORE if continue and prepare crystals instead of saturated solution	
	(D)	(11)	M1 calculation of actual mass of crystals obtained		3
			M2 division by expected mass of crystals (6.4) and multiplication by 100 to convert to percentage		
			M3 correct to 1 dp		
			Example calculation		
			M1 (6.40 – 1.80 =) 4.6(0)		
			M2 (% yield =) <u>4.6</u> x100 OR 71.875 (%) 6.4	M2 ECF M1	
			M3 = 71.9 (%)	M3 DEP M2	

Question number	Answer	Notes	Marks
10 (c) (i)	M1 find percentage of water		3
	M2 divide each percentage by Mr to find number of moles		
	M3 divide each answer by smallest to find ratio and value of x		
	Expected calculation:		
	M1 (79%) CaSO ₄ 21% H ₂ O		
	M2 <u>79</u> (= 0.58) <u>21</u> (= 1.17) 136 18		
	M3 <u>0.58</u> 0.58 <u>1.17</u> = 1 : 2 0.58		
	so x = 2	correct answer without working scores 3	
(ii)	description including		2
	M1 do a flame test	ALLOW description of	
	M2 orange-red flame		

(Total for Question 10 = 15)

Total for paper = 110 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom