

Physics B (Advancing Physics)

Advanced GCE H559

Advanced Subsidiary GCE H159

Mark Scheme for the Units

January 2010

HX59/MS/R/10J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Physics B (H559)

Advanced Subsidiary GCE Physics (H159)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
G491 – Physics in Action	1
G492 – Understanding Processes, Experimentation and Data Handling	7
G494 Rise and Fall of the Clockwork Universe	12
Grade Thresholds	19

G491 – Physics in Action

Section A

Q	uestio	n Expected Answers	Marks	Additional Guidance
1	(a)	Ω m / V A ⁻¹ m / etc.	1	accept any correct equivalent base units e.g. $S^{-1} m / \Omega m^2 m^{-1}$ accept in words e.g. Ohm metres / capital M for m
	(b)	S m ⁻¹ / (Ω m) ⁻¹ / etc.	1	accept any correct equivalent base units e.g. A V ⁻¹ m ⁻¹ accept in words e.g. Siemens per metre / capital M for m
2		increase ; brightness / increase / stretch / improve ; contrast / OR Any two from: (pixel value) subtract (smallest pixel value) / multiply / by greater than 1	2	AW sense of change for first mark ; named modification accept brighter for 2 marks accept increase pixel values for 1 mark accept stretch / increase range of pixel values for 2 marks e.g. times pixel value by 4 gets 2 mark ignore edge detection, noise reduction etc
3	(a)	crystal features / sharp or straight edges / flat planes or straight lines / regular angles / cleavage	1	 accept AW for idea of regularity in any form accept straight breaks / sharp cracks Ignore references to crack propagation accept ORA: states feature of plastic flow and notes they are missing NOT edges are rough / jagged / harsh
	(b)	structure might fail / fracture / is not tough in low temperatures (of space)	1	AW ora but need to make link to low temperatures allow weaker / not as strong in cold
4	(a)	peak to peak signal in the range 4.1 to 4.5 mV	1	n.b. analogue signal without noise variation – judge by value
	(b)	peak to peak noise in the range 0.2 to 0.5 mV	1	
	(c)	$(2^8) = 256$ (levels)	1	NOT 255
	(d)	First easy mark, any one relevant point:4 bits / 2^4 gives 16 levels /coding for noise detail is pointless / (4) bits areredundant /resolution for (8 bits) is too good / small / smaller thannoise (level)Second mark (must be quantitative) $(V_{total} / V_{noise}) \approx 16 / own value correctly calculated /resolution \approx 5 \text{ mV} / 255 = 0.02 \text{ mV}$	2	AW throughout accept $\log_2 (V_{total} / V_{noise}) \approx 4$ for 1 mark / with own value correctly calculated 2 marks NOT Any credit for sampling eliminating noise / converting noise to signal, but do not penalise with con . accept for first mark resolution of 4 bits \approx noise level allow ecf on their values from a and b e.g. 2.3/0.2 =11.5

Question		on	Expected Answers	Marks	Additional Guidance
5			$R = V^2 / P / = 240^2 / 2200$ 26.(2) (\Omega)	1 1	method / allow 1st mark for $(I = P / V) = 9.1(7)$ A evaluation no s.f. penalty
6	(a)		components e.g. glass & plastic / steel & concrete / stone/aggregate & cement / steel & glass / lignin & cellulose make composite e.g. GRP / reinforced concrete / concrete / safety glass / natural wood	1	 must mention two sensible components of a known / feasible composite for first mark accept natural composite materials e.g. wood / bone name the composite material for second mark (must be plausible) NOT e.g. steel reinforced carbon / carbon fibre reinforced steel / alloys (0 marks for alloy answers in part (a)) 1 mark only if the materials do not correspond to composite
	(b)		any one benefit of each component made clear e.g. strength / stiffness of glass ; toughness of plastic OR toughness / tensile strength of steel ; cheapness / aesthetics / moldability of concrete	2	accept aesthetic / economic / other non-physical properties for one component only only credit same property repeated once only accept tensile and compressive strength as different properties allow correct properties even if no credit for composite in (a) credit alloys answers from (a) e.g. steel – iron confers strength to alloy / carbon confers toughness accept properties developed in composite or properties of individual component materials to all answers (even if not the most significant property conferred)
7			wavefronts concave focusing where ray meets CCD wavelengths consistent with plane waves (judged by eye)	1 1	NOT any credit for only rays focussing Expect 3 or 4 wavefronts drawn to fill gap, but 2 correctly placed waves can score also 2 marks
			Total section A	19	

G491

Se	Section B					
Question		on	Expected Answers	Marks	Additional Guidance	
8	(a)	(i)	(stress / strain graph) is proportional / constant stiffness / obeys Hooke's Law / shows elastic behaviour / is linear and through origin	1	AW accept any one answer accept Young Modulus is constant not just linear (need both points if this answer)	
		(ii)	<i>E</i> is initial gradient / numerical attempt up to strain 0.11% e.g. gradient = 200 MPa / 0.0009 = 2.2(2) x 10 ¹¹ (\pm 0.1 x 10 ¹¹) (Pa)	1 1 1	method accept triangle drawn on graph for this mark accept other correct values from graph including linear extrapolations evaluation : penalise incorrect use of % as -1 mark i.e. max 2/3 for 2.2 x 10 ⁷ Pa / 2.2 x 10 ⁹ Pa also penalise missing M prefix -1 mark i.e. 2200 Pa scores 1 out of 3 NOT any credit for graph points outside elastic region e.g. 300 MPa / 0.005 (scores 0)	
	(b)	(i)	$(L_0 \epsilon = 0.2 \times 0.005) = 0.001 (m) / 1.0 mm$	1	evaluation only, method not expected	
		(ii)	$(A = \pi D^2 / 4) = 5.0(3) \times 10^{-5} (m^2)$ $F = \sigma A / = 300 \times 10^6 \times 5.0(3) \times 10^{-5}$ $= 1.5(1) \times 10^4 (N)$	1 1 1	part evaluation method accept full credit for correct answer accept ecf on incorrect areas for last two marks accept max stress of 220 MPa gives 1.1(1) x 10 ⁴ (N) for max 2/3	
	(c)		3 points from: not all of the planes slip at once ; dislocation described / annotated diagrams ; produce stress / strain concentration ; which moves (through grain) by a few planes / rows slipping at a time ; if all of planes slip the resulting strain >> 0.1% plausible diagrams illustrating the above points (without mention of dislocations) can gain full credit	3	 3rd mark is for QWC clarity that slip / stress / strain is localised to a few planes / rows of atoms at a time not all at once AW throughout QWC answer must clearly explain that slip is localised to a few planes / rows of atoms at a time, otherwise max 2 	
			Total question 8	11		

Mark Scheme

Qu	Question		Expected Answers	Marks	Additional Guidance
9	(a)		for functioning circuit diagram including: battery / cell, (m)A and sample in series voltmeter in parallel with sample	1 1	accept Ωmeter and sample in one loop for full credit NOT voltmeter in series (scores 0 for part (a)) accept voltmeter in parallel with sample and ammeter ignore series / safety resistors (unless voltmeter across them)
	(b)		Any 3 points from measure <i>R</i> directly / measure <i>V</i> and <i>I</i> ; G = 1 / R / G = I / V; measure length <i>L</i> (of semiconductor); measure width and height (of semiconductor)	3	NOT any credit for lengths only mentioned in an equation
	(c)		(cross-sectional) area = width x height (use of) $\sigma = G L / A$ in symbols / $\sigma = 0.01 \times 0.01 / (0.01 \times 0.001)$	1 1	Look at (b) / (c) together, credit here if seen in (b) must be clear area is width x height in (b) / (c) for this mark must have transposed equation from formulae sheet for this mark
	(d)		identify source of uncertainty (any measurement) / systematic error (zero error / calibration of any instrument)	1	1 st mark quite easy e.g. uncertainty in thickness measurement / systematic error in resistance measurement / temperature effects / meter resistance / meter resolution NOT human error / internal resistance of supply
			changes e.g. use micrometer to measure thickness / Vernier calliper to measure width & height / more sensitive meters repeat readings / swap / calibrate meters and average to find mean / spread / monitor temperature / reduce p.d.	1	NOT just repeat readings / take more accurate measurements
			improvements / explanation measurements more precise to \pm 0.01 mm / plot <i>I</i> vs <i>V</i> graph & line of best fit, use gradient for <i>G</i> to reduce absolute / % uncertainty swap / calibrate meters to eliminate systematic error	1	QWC max 2 if ideas are not clearly described and explained
			Total question 9	10	

Question		on	Expected Answers	Marks	Additional Guidance
10	(a)	(i)	$720 \times 1280 \times 24 \times 50 = 1.1(1) \times 10^9$ (bits s ⁻¹)	1	accept bare answer to 2 or more s.f.
		(ii)	1.1 x 10 ⁹ x 3600 (s/hr) / 8 (bits/byte)	1 1	method / allow 1^{st} mark for getting as far as 3.98 x 10^{12} bits or for recognising 8 bits per byte
			= 498 Gbytes		evaluation accept 450 Gbytes using 10 ⁹ bits s ⁻¹ / 495 Gbytes using rounded bit rate
		(iii)	200 (Gbyte) / 80 (hr) = 2.5 (Gbyte / hr)	1	accept bare answer to 2 s.f. accept ORA 3Gbytes x 80 = 240 > 200
	(b)	(i)	max information per hour > memory capacity per hour / 498 Gbyte > 2.5 Gbyte (so data must be compressed)	1	accept ecf on (a)(ii) > (a)(iii) accept total information for 80hrs (312 Tb > 1.6 Tb) ignore factors of 2 or 0.5 expect compression ratio 200:1 if worked out
		(ii)	one point from: 10 MHz < 1.1 Gbit s ⁻¹ / (a)(i) signal bandwidth is too small to support the max bit rate / bandwidth needs to be \approx bit rate / cannot transmit several bits per carrier cycle (so data must be compressed)	1	accept ecf on 10 MHz < (a)(i) AW
	(c)		transverse wave by word / diagram oscillations (of E / B field) only in vertical direction / plane	1 1	accept any transverse wave diagram AW but must be described / diagram labelled clearly NOT travels / moves in one plane / direction
			Total question 10	8	

G491

Question		on	Expected Answers	Marks	Additional Guidance
11	(a)	(i)	(I = V/R = 6.0/240) = 0.025 (A)	1	accept 0.03 (A)
		(ii)	Constant current, any 2 from B increases resistance / F decreases in resistance / changes of resistance are equal (and opposite) / total resistance remains constant	2	AW
			p.d. across B increases Constant current and larger R hence larger V OR ratio $R_B / R_F > 1$ / correct discussion of potential divider $R_B / R_{total} > \frac{1}{2}$	1	allow <i>V =I R</i> argument
	(b)	(i)	$\Delta y / \Delta x$ / e.g. = (3.010 - 2.998) / (0.6 - 0) = 0.020 (V MPa ⁻¹)	1 1	method must clearly be attempt at a gradient for 1 st mark evaluation two marks if value is correct
		(ii)	from graph when $\Delta y = 1 \text{ mV}$ / pressure resolution = voltage resolution / sensitivity $\Delta x = 0.05 \text{ M(Pa)}$ / 5.0 x 10 ⁴ (Pa)	1	method must be clear for 1st mark evaluation allow 0.05 (Pa) for 1 mark (prefix omission)
		(iii)	change of temperature will change resistance /	1	accept wrong sense for metals
			(if a resistor changes temp.) p.d. will shift off 3.0 V / produces a constant difference / error offset / zero error	1	accept shift up / down in p.d / sense of shift not expected
	(c)	(i)	both potential dividers produce 3.0 V so p.d. is zero / the voltage at both ${\bf M}$ and ${\bf N}$ is the same so p.d. is zero	1	AW
		(ii)	(pressure resolution) = 500 (Pa)	1	accept ecf on (b)(ii) / 100
			Total question 11	12	
			Total section B	41	
			Paper total	60	