

OXFORD CAMBRIDGE AND RSA EXAMINATIONS


Advanced Subsidiary GCE

PHYSICS A G481

Unit G481: Mechanics

Specimen Mark Scheme

The maximum mark for this paper is 60.

Number	Answer	Max Mark
1(0)(i)	Speed is the rate of change of distance / speed = distance/time	[D4]
1(a)(i)	Determine the circumference of the circle / Use $2\pi r$ to find distance	[B1] [B1]
	Measure the time for one revolution (using a stopwatch)	ניטן
	(speed = circumference/time)	[B1]
(ii)	Velocity is the rate of change of displacement / velocity = change in	
	displacement/time	
	The term <i>displacement</i> to be <u>included</u> and spelled correctly to score the mark.	[B1]
(iii)	Scalar has magnitude only, e.g: speed	[B1]
	Velocity has both magnitude and direction, e.g. velocity	[B1]
(b)(i)	The gradient is equal to velocity	[B1]
	The girl travels in two opposite directions (wtte)	[B1]
(ii)	Z at any peak or trough / A / B / 3.0 (s) / 6.0 (s)	[B1]
(iii)	Draw tangent at maximum gradient of graph	
	Draw two tangents and find gradients, uncertainty = \pm difference in gradients/2; result, e.g. \pm 0.1ms ⁻¹	[4]
2(a)	Acceleration is the rate of change of velocity / $a = (v - u)/t$ with symbols	
	explained	[B1]
(b)(i)	a = 65/25	
	$a = 2.6 \text{ (m s}^{-2})$	[C1]
	$F = ma /F = 1.5 \times 10^5 \times 2.6$	[C1]
	$F = 3.9 \times 10^5$ (N) (Possible ecf)	[A1]
(ii)	$s = (u+v)t/2$ / $s = (0+65) \times 25/2$	[C1]
	$s = 813 \approx 810 \text{(m)}$	[A1]
(c)	Reduce the mass of the aircraft	[B1]
	Correct explanation, e.g. Smaller mass means greater acceleration	
2/->/"	(wtte).	[B1]
3(a)(i)	power is the rate of work done / power = energy/time When a force of 1 N moves 1 m in the direction of the force, then the work	[B1]
(ii)	When a force of 1 N moves 1 m in the direction of the force, then the work done is equal to 1 joule	[B1]
(b)	The <u>component</u> of the force in the direction of the force is $F\cos\theta$.	
	The term component to be included and spelled correctly to gain the	
()(2)	mark.	[B1]
(c)(i)	$E_{\rm p} = mgh$	
	$E_{\rm p} = 500 \times 9.81 \times 3.9$	[C1]
(!!)	$E_p = 19130 \approx 19000 \text{ (J)}$	[A1]
(ii)	work done = (25 - 19 =) 6 (kJ)(5.870 kJ if 19130 J used)	[B1]
(iii)	distance up the slope = 3.9/sin30 (=7.8)	[C1]
(iii)	(Work = Fx)	
cònt'd	force = $(5870/7.8 =) 753$ (N) (769 N if 6000 J used)	[A1]

Question Number	Answer	Max Mark
4(a)	The extension of a spring is directly proportional to the applied force	[M1]
+(a)	as long as the elastic limit is not exceeded)	[A1]
(b)(i)	Correct pair of values read from the graph	ניין
(5)(1)	force constant = 12/0.080	[C1]
	force constant = 150 (N m ⁻¹)	[A1]
(ii)	·	[[
(,	extension, $x = \frac{20}{12} \times 80 (= 133.33)$ (mm)	[C1]
	$(E = \frac{1}{2} Fx)$	
	energy = $1/2 \times 20 \times 133.33 \times 10^{-3}$	
	energy = 1.33 (J)	[A1]
(iii)	The spring has not exceeded its elastic limit	[B1]
(iv)	(elastic potential energy = kinetic energy)	
	$\frac{1}{2}kx^2 = \frac{1}{2}mv^2$	
		[M1]
	<i>m</i> and <i>k</i> are constant, therefore $v \propto x$.	[M1]
5(a)(i)	Braking distance is the distance travelling by the car when the brakes	[04]
/::\	are applied and the car stops	[B1]
(ii)	Thinking distance is the distance travelled by the car in the time taken by the driver to react	[B1]
(b)(i)		[5.]
(5)(1)	$(E_k = 1/2mv^2)$	5047
	$E_{\rm k} = 1/2 \times 800 \times 20^2$	[C1]
(**)	$E_{\rm k} = 1.6 \times 10^5 ({\rm J})$	[A1]
(ii)	$(v^2 = u^2 + 2as)$	
	$0 = 20^2 + (2 \times a \times 24)$	[C1]
	$a = (-)8.3 \text{ (m s}^{-2})$	[A1]
(c)	Four from:	-
	Prevents the driver from hitting the steering wheel / windscreen	
	Deflates quickly to prevent whiplash	
	Increases the time/distance to stop	
	Decreases the (impact) force on the driver Much wider area of the bag reduces the pressure	[B1× 4]
(d)	No, because the percentage of drivers wearing seat belts is the same	[51, 4]
(4)	There must be other factors like safer cars / crumble zones / side-impact	
	bars / etc	[B1]
6(a)	The net force acting on the object must be zero	[B1]
6(a)	The net moment (about any point) must also be zero	
cont'd	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[B1]
(b)	Taking moments about A , we have	
	Sum of clockwise moments = sum of anticlockwise moments	[C1]
	$(0.25 \times 200) + (5.0 \times 9.81 \times 0.4) = 0.8F$	[C1]

Question Number	Answer	Max Mark
	F = 87 (N)	[A1]
(c)	These forces are opposite but not equal in magnitude.	[B1]
7(a)	Young modulus = stress/strain	
	(As long as elastic limit is not exceeded)	[B1]
(b)	Strain has no units because it is the ratio of two lengths.	
		[B1]
(c)	A brittle material does not have a plastic region / it breaks at its elastic	
	limit.	[B1]
(d)	Ultimate tensile strength is breaking stress for a material	[B1]
	Materials can be chosen / tested to prevent collapse of the bridge	[B1]
Paper Total		[60]