

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P70702A

Publications Code 4CH1_2C_2201_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number		Answer	Notes	Marks
	i)	M1 a compound/substance/molecule containing hydrogen/H and carbon/C (atoms)	no M1 if reference to element containing C and H OR C and H molecules	2
		M2 only	M2 dep on M1 or near miss	
(i	ii)	ethene has a double bond		1
(b)		A colourless		1
		A is the only correct answer because alkenes such as ethene react with bromine water forming a colourless solution B is not correct as bromine water is orange before it reacts with ethene C is not correct as the solution produced is not purple D is not correct as the solution produced is not red		
(c) (i	i)	temperature = 300°C pressure = 60-70 atmospheres	ACCEPT any value or range of values between 250 and 350°C If no unit given assume it is Celsius ACCEPT equivalent temperatures in other units provided the unit is given ACCEPT any value or range of values between 60 and 70 atm If no unit given assume it is atm ACCEPT equivalent pressures in other units provided the unit is given	2
(i	ii)	C ₂ H ₆ O	IGNORE size of numbers REJECT C ₂ H ₅ OH	1
			Total for c	uestion = 7

Question number	Answer		Notes	Marks
2 (a) (i)	(a) (i) D nitrogen D is the only correct answer as nitrogen is the most abundant gas in unpolluted air. A is not correct as there are only trace amounts of hydrogen in unpolluted air. B is not correct as there are only trace amounts of methane in unpolluted air. C is not correct as there are only trace amounts of neon in unpolluted air.			1
(ii)	C 21% C is the only correct answer as the perce oxygen in the air is 21% A is not the correct answer as the percer oxygen in the air is not 0.04% B is not the correct answer as the percer oxygen in the air is not 0.9% D is not the correct answer as the percer oxygen in the air is not 35%	ntage of		1
(b) (i)	cracking an alkane complete combustion of an alkane reaction between magnesium and hydrochloric acid rusting of iron thermal decomposition of copper(II) carbonate	>		2
(ii) (iii)	Any one from: M1 global warming M2 climate change argon		ALLOW greenhouse effect ALLOW an effect of global warming/climate change e.g. wildfires/melting of polar ice caps/flooding	1
(c) (i) (ii)	nitric acid sulfur dioxide		ALLOW HNO ₃ / nitrous acid /HNO ₂ ALLOW SO ₂	1
			ALLOW other oxides of nitrogen Total for o	question = 8

Question number	Answer	Notes	Marks
3 (a) (i)	M1 working shown on graph		2
	M2 56 (°C)	ALLOW any value between 56 and 57 inclusive.	
(ii)	M1 31-13		2
	M2 18 (g)	ALLOW ecf if one incorrect reading in M1	
		correct answer of 18g with or without working scores 2	
(b) (i)	5.1 (g)		1
(ii)	15 (g)		1
(iii)	M1 5.1÷15 OR 0.34 (g) OR answer to (i) ÷ answer to (ii)		2
	M2 34 (g) OR answer to M1 × 100	correct answer of 34 (g) with or without working scores 2	
(iv)	Any one from		1
	M1 (hydrated) copper(II) sulfate would become anhydrous copper sulfate	ALLOW the (hydrated) crystals would decompose	
	M2 (hydrated) copper(II) sulfate would lose water	•	question = 9

Question number		Answer	Notes	Marks
4 (a)	(i)	Any two from:		2
		M1 sodium moves (on the surface)		
		M2 sodium turns into a sphere/ball	ALLOW sodium melts	
		M3 effervescence	ALLOW fizzing / bubbles	
		M4 sodium gets smaller	ALLOW sodium	
		M5 white trail seen	disappears / dissolves IGNORE references to a flame	
	(ii)	blue / purple	IGNORE qualifiers ALLOW violet/lilac	1
(b)	(i)	same number of electrons/one electron in the outer	ALLOW same number of	1
(D)	(1)	shell.	valence electron valence electron	'
	(ii)	M1 lithium (atom) has a smaller atomic radius	ALLOW lithium is smaller (atom)/lithium (atom) has fewer shells /energy levels	3
			ALLOW outer electron in lithium (atom) is closer to the nucleus	
		M2 the outer shell electron is more strongly attracted to the nucleus OWTTE		
		M3 so is less easily lost		
			ALLOW reverse argument for sodium	
(c)		M1 amount lithium = 0.150 ÷ 7 OR 0.0214 mol	penalise 1 sig fig in M1	4
		M2 amount hydrogen = 0.0107 mol	ALLOW M1÷2	
		M3 254 ÷ 0.0107	ALLOW 2 or more sig figs in answers to M1 and M2	
		M4 23,738	ALLOW 2 or more sig figs if all working shown	
			correct answers in the range 23,707 to 24,910 cm³ to 3 or more significant figures, without working scores	
			4 marks. Total for qu	uestion = 11

A description that refers to any five of the following points M1 add hydrogen peroxide to the conical flask and add catalyst M2 start the timer M3 record volume of gas produced in a given time/ record the time for certain volume of gas to be produced M4 repeat with same mass of a different catalyst M5 and with same volume of hydrogen peroxide M6 plot the results on a graph and calculate gradient (for each catalyst) M7 the most effective catalyst gives the fastest rate of reaction OWTTE (b) (i) M1 a vertical line from the level of the hydrogen peroxide to the top of the curve labelled activation energy or E _a ALLOW double headed arrow REJECT arrow pointing down M2 a vertical line from the level of the hydrogen peroxide to the level of the water and oxygen labelled enthalpy change or ΔH (ii) curve starting from hydrogen peroxide level, below the peak of the original curve, and ending at water and oxygen level	Question number	Answer	Notes	Marks
peroxide to the top of the curve labelled activation energy or E _a M2 a vertical line from the level of the hydrogen peroxide to the level of the water and oxygen labelled enthalpy change or ΔH (ii) curve starting from hydrogen peroxide level, below the peak of the original curve, and ending at water and oxygen level		points M1 add hydrogen peroxide to the conical flask and add catalyst M2 start the timer M3 record volume of gas produced in a given time/record the time for certain volume of gas to be produced M4 repeat with same mass of a different catalyst M5 and with same volume of hydrogen peroxide M6 plot the results on a graph and calculate gradient (for each catalyst) M7 the most effective catalyst gives the fastest rate		5
the peak of the original curve, and ending at water and oxygen level	(b) (i)	peroxide to the top of the curve labelled activation energy or E _a M2 a vertical line from the level of the hydrogen peroxide to the level of the water and oxygen	an arrow head ALLOW double headed arrow REJECT arrow pointing down ALLOW double headed arrow REJECT arrow pointing	2
Total for question = 8	(ii)	the peak of the original curve, and ending at water	Total	

	Questi numb		Answer	Notes	Marks
6	(a)	(i)	all points plotted ± half a square	0.54	1
		(ii)	curved line of best fit	Champin Sub (Champin Sub (Ch	1
		(iii)	An explanation that links the following two points	lejieu in minutus	2
			M1 curve shows increasing mass (of negative electrode) because (more) copper deposits/forms		
			M2 line becomes horizontal because there are no more copper(II) ions left in the solution/ all the copper has been deposited/formed OWTTE	ALLOW line becomes horizontal as there is no copper sulfate solution left	
	(b)	(i)	A description that refers to two of the following points		2
			M1 fill a test tube/measuring cylinder with copper sulfate solution	ALLOW fill a test tube/ measuring cylinder with water	
			M2 place the tube over the positive electrode		
			M3 collect gas/oxygen by displacement of solution/water		
		(ii)	$2H_2O \rightarrow O_2 + 4H^+ + 4e^{(-)}$		2
			M1 all formulae correct		
			M2 correct balancing of correct formulae	M2 dep on M1	
			OR		
			$40H^{-} \rightarrow O_2 + 2H_2O + 4e^{(-)}$		
			M1 all formulae correct		
			M2 correct balancing of correct formulae	M2 dep on M1	
	(c)	(i)	M1 layers (of atoms or ions)	ALLOW sheets/rows	2
			M2 can slide over one another	M2 dep on M1 ALLOW atoms/ions slide over each other for M2	
		(ii)	M1 delocalised electrons	IGNORE sea of electrons /free electrons	2
			M2 are free to move (throughout the structure)	M2 dep on mention of electrons in M1	
				0 marks if reference to ions moving	
					uestion = 12

Question number	Answer	Notes	Marks
7 (a) (i)	H O H H H C C O C C H H H H	REJECT any other atoms in the ring.	1
(ii)	ethyl ethanoate	ALLOW ethylethanoate	1
		ALLOW ethyl acetate	
(iii)	M1 add a metal such as magnesium, aluminium, zinc or iron	must be a named metal REJECT Group 1 metals	2
	M2 effervescence/bubbles/fizzing	ACCEPT test gas with lighted splint which pops	
	OR	M2 dep on reference to adding a metal	
	M1 add a carbonate	ACCEPT any named carbonate	
	M2 effervescence/bubbles/fizzing	ACCEPT test gas with limewater which goes cloudy/milky	
		M2 dep on M1	
(b)	M1 C-O and one / two O-H bonds are broken and formed	ALLOW the same bonds are broken and formed	2
	M2 so the same amount of energy is needed to break the bonds in the reactants as is given off when the bonds in the products are formed	ALLOW energy of bonds formed equals energy of bonds broken	
(c) (i)	M1 the rate of the forward reaction equals the rate of the backward reaction		2
	M2 the concentrations of reactants and products remain constant	REJECT concentration of the reactants and products are the same	
(ii)	M1 a catalyst increases the rate of forward and backward reactions		2
	M2 equally	M2 dep on M1	

Question number	Answer	Notes	Marks
7 (d)	example calculation		3
	M1 moles barium hydroxide = (0.150 × 22.75)÷ 1000 OR 0.0034125	M1 needs to be given to at least 3 sig figs	
	M2 moles ethanoic acid = 0.006825	ALLOW M1 × 2	
	M3 moles ethanoic acid to 3 significant figures = 0.00683	ALLOW answer to M2 to 3 significant figures.	
		correct answer of 0.00683 moles with or without working scores 3 marks	
		ACCEPT answer in standard form	
		ACCEPT 0.00682 if M1 given to 3 sig figs	
		6.83 with or without working scores 2 marks	
(e)	correct answer scores 2 marks	ALLOW structure without extension bonds	2
		IGNORE brackets and n and + H ₂ O	
	M1 three carbons from the dicarboxylic acid and two from the diol and the ester linkage		
	M2 -OH lost from the dicarboxylic acid and -H lost from the diol	ALLOW -OH lost from diol and -H lost from dicarboxylic acid	
		Total for qu	uestion = 15