Pearson
 Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P70702A
Publications Code 4CH1_2C_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
1 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 a compound/substance/molecule containing hydrogen/H and carbon/C (atoms) \\
M2 only \\
ethene has a double bond
\end{tabular} \& \begin{tabular}{l}
no M1 if reference to element containing C and \(\mathrm{H} O R \mathrm{C}\) and H molecules \\
M2 dep on M1 or near miss
\end{tabular} \& 2

1

\hline (b) \& | A colourless |
| :--- |
| A is the only correct answer because alkenes such as ethene react with bromine water forming a colourless solution |
| B is not correct as bromine water is orange before it reacts with ethene |
| C is not correct as the solution produced is not purple |
| D is not correct as the solution produced is not red | \& \& 1

\hline | (C) |
| :--- |
| (i) |
| (ii) | \& | temperature $=300^{\circ} \mathrm{C}$ |
| :--- |
| pressure $=60-70$ atmospheres $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | \& | ACCEPT any value or range of values between 250 and $350^{\circ} \mathrm{C}$ If no unit given assume it is Celsius |
| :--- |
| ACCEPT equivalent temperatures in other units provided the unit is given |
| ACCEPT any value or range of values between 60 and 70 atm If no unit given assume it is atm |
| ACCEPT equivalent pressures in other units provided the unit is given |
| IGNORE size of numbers |
| REJECT $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ | \& 2

\hline \multicolumn{4}{|r|}{Total for question = 7}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 working shown on graph M2 \(56\left({ }^{\circ} \mathrm{C}\right)\) \\
M1 31-13 \\
M2 18 (g)
\end{tabular} \& \begin{tabular}{l}
ALLOW any value between 56 and 57 inclusive. \\
ALLOW ecf if one incorrect reading in M1 \\
correct answer of 18 g with or without working scores 2
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
5.1 (g) \\
15 (g) \\
M1 5.1 \(\div 15\) OR 0.34 (g) OR answer to (i) \(\div\) answer to (ii) \\
M2 \(34(\mathrm{~g})\) OR answer to \(M 1 \times 100\) \\
Any one from \\
M1 (hydrated) copper(II) sulfate would become anhydrous copper sulfate \\
M2 (hydrated) copper(II) sulfate would lose water
\end{tabular} \& \begin{tabular}{l}
correct answer of 34 (g) with or without working scores 2 \\
ALLOW the (hydrated) crystals would decompose
\end{tabular} \& 1
1
1
2

1

\hline \multicolumn{4}{|r|}{Total for question $=9$}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
4 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Any two from: \\
M1 sodium moves (on the surface) \\
M2 sodium turns into a sphere/ball \\
M3 effervescence \\
M4 sodium gets smaller \\
M5 white trail seen \\
blue / purple
\end{tabular} \& \begin{tabular}{l}
ALLOW sodium melts \\
ALLOW fizzing / bubbles \\
ALLOW sodium disappears / dissolves \\
IGNORE references to a flame \\
IGNORE qualifiers \\
ALLOW violet/lilac
\end{tabular} \& 2

1

\hline | (b) (i) |
| :--- |
| (ii) | \& | same number of electrons/one electron in the outer shell. |
| :--- |
| M1 lithium (atom) has a smaller atomic radius |
| M2 the outer shell electron is more strongly attracted to the nucleus OWTTE |
| M3 so is less easily lost | \& | ALLOW same number of valence electrons/one valence electron |
| :--- |
| ALLOW lithium is smaller (atom)/lithium (atom) has fewer shells /energy levels |
| ALLOW outer electron in lithium (atom) is closer to the nucleus |
| ALLOW reverse argument for sodium | \& | 1 |
| :--- |
| 3 |

\hline (c) \& | M1 amount lithium $=0.150 \div 7$ OR 0.0214 mol M2 amount hydrogen $=0.0107 \mathrm{~mol}$ |
| :--- |
| M3 $254 \div 0.0107$ |
| M4 23,738 | \& | penalise 1 sig fig in M1 |
| :--- |
| ALLOW M1 $\div 2$ |
| ALLOW 2 or more sig figs in answers to M1 and M2 |
| ALLOW 2 or more sig figs if all working shown |
| correct answers in the range 23,707 to 24,910 cm^{3} to 3 or more significant figures, without working scores 4 marks. | \& 4

\hline \multicolumn{4}{|r|}{Total for question = 11}

\hline
\end{tabular}

Question number	Answer	Notes	Marks
5 (a)	A description that refers to any five of the following points M1 add hydrogen peroxide to the conical flask and add catalyst M2 start the timer M3 record volume of gas produced in a given time/ record the time for certain volume of gas to be produced M4 repeat with same mass of a different catalyst M5 and with same volume of hydrogen peroxide M6 plot the results on a graph and calculate gradient (for each catalyst) M7 the most effective catalyst gives the fastest rate of reaction OWTTE		5
(b) (i) (ii)	M1 a vertical line from the level of the hydrogen peroxide to the top of the curve labelled activation energy or E_{a} M2 a vertical line from the level of the hydrogen peroxide to the level of the water and oxygen labelled enthalpy change or ΔH curve starting from hydrogen peroxide level, below the peak of the original curve, and ending at water and oxygen level	the line does not need an arrow head ALLOW double headed arrow REJECT arrow pointing down ALLOW double headed arrow REJECT arrow pointing up	2
Total for question $=8$			

Question number	Answer	Notes	Marks
6 (a) (i) (ii) (iii)	all points plotted \pm half a square curved line of best fit An explanation that links the following two points M1 curve shows increasing mass (of negative electrode) because (more) copper deposits/forms M2 line becomes horizontal because there are no more copper(II) ions left in the solution/ all the copper has been deposited/formed OWTTE	 ALLOW line becomes horizontal as there is no copper sulfate solution left	1 1 2
(b) (i) (ii)	A description that refers to two of the following points M1 fill a test tube/measuring cylinder with copper sulfate solution M2 place the tube over the positive electrode M3 collect gas/oxygen by displacement of solution/water $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{(-)}$ M1 all formulae correct M2 correct balancing of correct formulae OR $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{(-)}$ M1 all formulae correct M2 correct balancing of correct formulae	ALLOW fill a test tube/ measuring cylinder with water M2 dep on M1 M2 dep on M1	2
(c) (i) (ii)	M1 layers (of atoms or ions) M2 can slide over one another M1 delocalised electrons M2 are free to move (throughout the structure)	ALLOW sheets/rows M2 dep on M1 ALLOW atoms/ions slide over each other for M2 IGNORE sea of electrons /free electrons M2 dep on mention of electrons in M1 0 marks if reference to ions moving	2 2
Total for question = 12			

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
7 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
 \\
ethyl ethanoate \\
M1 add a metal such as magnesium, aluminium, zinc or iron \\
M2 effervescence/bubbles/fizzing \\
OR \\
M1 add a carbonate \\
M2 effervescence/bubbles/fizzing
\end{tabular} \& \begin{tabular}{l}
REJECT any other atoms in the ring. \\
ALLOW ethylethanoate \\
ALLOW ethyl acetate \\
must be a named metal REJECT Group 1 metals \\
ACCEPT test gas with lighted splint which pops \\
M2 dep on reference to adding a metal \\
ACCEPT any named carbonate \\
ACCEPT test gas with limewater which goes cloudy/milky \\
M2 dep on M1
\end{tabular} \& 1

1
1
2

\hline (b) \& | M1 C-O and one / two O-H bonds are broken and formed |
| :--- |
| M2 so the same amount of energy is needed to break the bonds in the reactants as is given off when the bonds in the products are formed | \& | ALLOW the same bonds are broken and formed |
| :--- |
| ALLOW energy of bonds formed equals energy of bonds broken | \& 2

\hline | (c) (i) |
| :--- |
| (ii) | \& | M1 the rate of the forward reaction equals the rate of the backward reaction |
| :--- |
| M2 the concentrations of reactants and products remain constant |
| M1 a catalyst increases the rate of forward and backward reactions |
| M2 equally | \& | REJECT concentration of the reactants and products are the same |
| :--- |
| M2 dep on M1 | \& 2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
7 (d)	example calculation M1 moles barium hydroxide $=(0.150 \times 22.75) \div 1000$ OR 0.0034125 M2 moles ethanoic acid $=0.006825$ M3 moles ethanoic acid to 3 significant figures = 0.00683	M1 needs to be given to at least 3 sig figs ALLOW M1 $\times 2$ ALLOW answer to M2 to 3 significant figures. correct answer of 0.00683 moles with or without working scores 3 marks ACCEPT answer in standard form ACCEPT 0.00682 if M 1 given to 3 sig figs 6.83 with or without working scores 2 marks	3
(e)	correct answer scores 2 marks M1 three carbons from the dicarboxylic acid and two from the diol and the ester linkage $\mathrm{M} 2-\mathrm{OH}$ lost from the dicarboxylic acid and -H lost from the diol	ALLOW structure without extension bonds IGNORE brackets and n and $+\mathrm{H}_{2} \mathrm{O}$ ALLOW -OH lost from diol and -H lost from dicarboxylic acid	2
Total for question = 15			

