Mark Scheme (Results)

November 2020

Pearson Edexcel GCSE

In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2020
Publications Code 1MA1_3H_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with an alternative response.

4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g $3.5-4.2$) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

11 Number in brackets after a calculation
Where there is a number in brackets after a calculation E.g. $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas E.g. " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets E.g. [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

14 Misread
If a candidate misreads a number from the question. Eg. uses 252 instead of 255; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
$\mathbf{P} \quad$ process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity

B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
$\begin{array}{ll}1 & \text { (a) } \\ & \text { (b) } \\ & \\ & \text { (c) }\end{array}$	n^{8}	B1	cao	
	$c d^{3}$	M1	for partial simplification, eg c or d^{3}	May be seen as simplification in original fraction
		A1	for $c d^{3}$	Accept $c^{1} d^{3}$
	$x>\frac{14}{5}$	M1	for $5 x>14$ or $5 x=14$ or critical value, $\frac{14}{5}$ oe	Must see carried out correctly, ie at least $5 x>7 \times 2$ not just intention seen. Allow other signs for this mark.
		A1	$x>\frac{14}{5}$ or $x>2 \frac{4}{5}$ or $x>2.8$	
2	2 hours 45 minutes		for $30 \div 24(=1.25)$ or $12 \div 8(=1.5)$	May be written in hours and/or minutes
		P1	for finding the sum of their two times eg " 1.25 " + " 1.5 " (= 2.75) or 165 (minutes)	or 3 h 15 min or 2 h 75 min
		A1	cao	
3	9.35, 9.45	B1 B1	for 9.35 in the correct position for 9.45 in the correct position	Accept $9.44 \dot{9}$ oe or $9.4499 \ldots$ oe

| Paper: 1MA1/3H | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| Question | Answer | Mark | Mark scheme |
| 4 (a) | Yes
 (supported) | P1 | for start of process,
 eg $5 \times 9(=45)$ or $10 \times 14(=140)$ or $5 \times 2(=10(\mathrm{~kg}))$
 or $3 \div 2(=1.5($ boxes $))$ |

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Paper: 1MA1/3H \\
\hline Question \\
\hline Answer
\end{tabular}} \\
\hline \multirow[t]{4}{*}{9} \& \multirow[t]{4}{*}{2820} \& P1 \& for start to process to find height of triangle, eg \(\tan (40)=\frac{h}{5}\) oe or equivalent process to find the height of the triangle or start to process to find slant height, eg \(\frac{10}{\sin 100}=\frac{x}{\sin 40}\) \& \\
\hline \& \& P1 \& for complete process to find height of triangle, eg \(5 \tan 40\) (\(=4.19 \ldots\)...) or complete process to find the slant height, eg \(\frac{10}{\sin 100} \times \sin 40(=6.5 \ldots)\) \& Accept 4.2 \\
\hline \& \& P1 \& \begin{tabular}{l}
for start of process to find volume of prism, eg \(10 \times 20 \times 12(=2400)\) or \(0.5 \times 10 \times\) "4.19..." \(\times 20(=419 \ldots\). or \(\frac{1}{2} \times 10 \times\) " \(6.52 \ldots\).." \(\times \sin 40 \times 20\) (419...) \\
or process to find total area of cross section, eg \(0.5 \times 10 \times\) " \(4.19 \ldots\)..." \(10 \times 12\) (= 140.9...) or \(\frac{1}{2} \times " 6.52 \ldots " \times " 6.52 \ldots " \times \sin 100+10 \times 12(=140.9 \ldots)\)
\end{tabular} \& \(10 \times 20 \times 12\) may be seen as part of a calculation to find the volume of the prism \\
\hline \& \& P1

A1 \& | for complete process to find total volume, eg $(0.5 \times 10 \times$ " $4.19 \ldots "+10 \times 12) \times 20$ |
| :--- |
| for an answer in the range 2810 to 2820 | \& If an answer is given in the range in working and then rounded incorrectly award full marks.

\hline
\end{tabular}

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
12 (a)	$3 x^{2}$	M1	for method to identify a common denominator, eg $(x-4)(x+2)$	Accept $\frac{2 x(x+2)}{(x-4)(x+2)}+\frac{x(x-4)}{(x-4)(x+2)}$
	$(x-4)(x+2)$	M1	for method to combine the fractions, eg $\frac{2 x(x+2)+x(x-4)}{(x-4)(x+2)}$	
		A1	$\text { for } \frac{3 x^{2}}{(x-4)(x+2)} \text { or } \frac{3 x^{2}}{x^{2}-2 x-8}$	
(b)	$8 x^{3}-2 x^{2}-51 x-45$	M1	for method to find the product of two linear expressions, eg 3 correct terms out of 4 terms or 4 terms ignoring signs	Note that, for example, $-3 x-9$ in expansion of $(x-3)(2 x+3)$ is to be regarded as 3 correct terms.
		M1	for a complete method to obtain all terms, half of which are correct (ft their first product) eg $8 x^{3}-12 x^{2}-15 x+10 x^{2}-36 x-45$	First product must be quadratic with at least 3 terms but need not be simplified or may be simplified incorrectly
		A1	cao.	
13	region identified	M1	for 2 of lines $x=2, y=x+3,2 x+3 y=6$ correctly drawn	Accept use of full or broken lines for all marks
		M1	for all 3 lines $x=2, y=x+3,2 x+3 y=6$ correctly drawn	
		M1	for region which satisfies at least 2 of the inequalities $x \leq 2, y \leq x+3$, $2 x+3 y \geq 6$	Award for clear intention, shading not needed.
		A1	for correct region identified	Award for clear intention, shading not needed.
	no supported with reason	B1	for no and reason, eg $(2,4)$ does satisfy $x+y \leq 6$ or $(2,4)$ lies on the boundary of the region satisfying the equality sign.	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
14	$\begin{gathered} 60 \\ \text { (supported) } \end{gathered}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { C1 } \end{array}$	for angle $D B F$, eg $180-100(=80)$ for angle $B F D$, eg $180-" 80 "-40(=60)$ or for angle $C B F=40$ for angle $A B D=60$ (dep M2) for at least 2 reasons from Opposite angles of a cyclic quadrilateral add up to 180 Angles in a triangle add up to 180 Alternate segment theorem OR Opposite angles of a cyclic quadrilateral add up to 180 Alternate segment theorem Angles on a straight line add up to 180	Angles may be shown on the diagram or in working Underlined words need to be shown; reasons need to be linked to their method
15	Proof	M1 A1	for $10 x=7.333 \ldots$ (7.3) and for finding difference that would lead to a terminating decimal for completing algebra to reach $\frac{11}{15}$	$100 x$ and 1000x, etc could also be used

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
18	6.495190528	B1M1	for 11.25 or 11.35 use $a^{2}+a^{2}+a^{2}$ oe for the square of the length of a diagonal for writing an equation to find the length of a side, eg $a^{2}+a^{2}+a^{2}=[\mathrm{LB}]^{2}$ where $11.25 \leq \mathrm{LB}<11.3$ oe for an answer in the range 6.49 to 6.50	If the answer is given in the range 6.49 to 6.5 without supportive evidence award 0 marks.
		M1		
		A1		

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
19	Proof	P1	for start to process to find area of $A B C D E F$, eg area of equilateral triangle $=\frac{1}{2} \times x \times x \times \sin 60\left(=\frac{\sqrt{3}}{4} x^{2}\right)$ OR for start to process to find area of $F G H I J K$, $\text { eg area of equilateral triangle }=\frac{1}{2} \times p x \times p x \times \sin 60\left(=\frac{\sqrt{3}}{4} p^{2} x^{2}\right)$	Any correct process to find the area of part of the hexagon is acceptable for this mark, eg $\frac{1}{2} \times x \times x \times \sin 120$ or $\frac{1}{2} \times(x+2 x) \times \frac{\sqrt{3}}{2} x$ Allow $\sin 60$ left in expressions for the first 3 marks. Accept $\frac{3 \sqrt{3}}{2} x^{2}\left(p^{2}-1\right)$ as final result.
		P1	for complete process of finding area of $A B C D E F$, eg $6 \times \frac{1}{2} \times x \times x \times \sin 60$ or $6 \times \frac{1}{2} \times x \times x \times \frac{\sqrt{3}}{2} \quad\left(=\frac{3 \sqrt{3}}{2} x^{2}\right)$ oe OR for complete process of finding area of $F G H I J K$, eg $6 \times \frac{1}{2} \times p x \times p x \times \frac{\sqrt{3}}{2} \quad\left(=\frac{3 \sqrt{3}}{2} p^{2} x^{2}\right)$ oе	
		P1	for process of finding area of $A B C D E F$ eg $\frac{3 \sqrt{3}}{2} x^{2}$ oe AND for process of finding area of F GHIJK, eg $p^{2} \times \frac{3 \sqrt{3}}{2} x^{2}$ oe	
		C1	correct algebra leading to given result, $\frac{3 \sqrt{3}}{2}\left(p^{2}-1\right) x^{2}$	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	98^{91}	B1	cao	Must be clear and unambiguous
21 (a)	3:4	P1	for start of process, eg isolate terms in c, eg $4 c=3 d$ or divide all terms by d, eg $\frac{5 c}{d}+1=\frac{c}{d}+4$	Accept any equivalent ratio or $c=3, d=4$
		A1	for 3 : 4	
(b)	$5: 2$	P1	for start of process: to take all terms to one side eg $6 x^{2}-7 x y-20 y^{2}(=0)$ or divide all terms by y^{2}, eg $\frac{6 x^{2}}{y^{2}}=\frac{7 x y}{y^{2}}+\frac{20 y^{2}}{y^{2}}$ or substitute a value of $x(x>0)$ or a value of $y(y>0)$ into the equation, eg $x=5,150=35 y+20 y^{2}$	
		P1	for second step in process, eg $(2 x-5 y)(3 x+4 y)(=0)$ or $6 p^{2}-7 p-20(=0)\left(\right.$ where $\left.p=\frac{x}{y}\right)$ or $20 y^{2}+35 y-150(=0)$	
		A1	5:2	Accept $x=5, y=2$ or equivalent ratios,eg, $1: \frac{2}{5}$

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 3H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1/3H			
Question		Modification	Mark scheme notes
1	(b)	The letter c changed to p. The letter d changed to q.	Standard mark scheme but note the change in letters.
5		Wording added 'Look at the diagrams for Question 27 in the Diagram Book.' Diagrams enlarged. Spinner headings moved above the spinners. Spinners straightened, stick replaced with black dot. Wording added 'There are six spaces to fill.'	Standard mark scheme
6	(a)	Wording added 'Look at the diagram for Question 28(a) in the Diagram Book. It shows the graphs of $5 x-9 y=-46$ and $y=-2 x$, Diagram enlarged and turned landscape. Label ' $y=-2 x$ ' moved to the other end of the graph line.	Standard mark scheme
6	(b)	Wording added 'Look at the diagram for Question 28(b) in the Diagram Book. It shows the graph of $y=x^{2}-4 x+2$.' Diagram enlarged. Grid cut at $y=8$. Small squares removed. Graph line made thicker.	Standard mark scheme but for answers in the ranges 0.5 to 0.7 and 3.3 to 3.5

PAPER: 1MA1/3H			
Question		Modification	Mark scheme notes
13	(a)	Grid cut at $x=7$ and $y=7$. Diagram enlarged. Wording added "Look at the diagram for Q13(a) in the Diagram Book.'	Standard mark scheme
13	(b)	Wording added 'Look at the diagram for Question 13(b) in the Diagram Book.' Wording 'The diagram below shows...' changed to 'It is a grid showing...'. Diagram enlarged. Shading changed to dotty shading. Right axis labelled.	Standard mark scheme
14		Wording added 'Look at the diagram for Question 14 in the Diagram Book.' Diagram enlarged. Angle labels moved outside angle arcs and the angle arcs made smaller. Wording added 'Angle BDF $=40^{\circ}$ Angle DEF $=100^{\circ}$,	Standard mark scheme
16		Wording added 'Look at the diagram for Question 16 in the Diagram Book.' The wording 'Here is a...' removed and replaced by 'It shows a...'. Diagram enlarged. Axis labels moved above the vertical axis and to the left of the horizontal axis. Right axis labelled. Small squares removed. Intermediates added at every $1 \mathrm{~m} / \mathrm{s}$. In part (c) box removed from around information.	Standard mark scheme Apply a greater tolerance in reading off and therefore arriving at the answer for part (a).
17		Wording added 'Look at the diagram for Question 17 in the Diagram Book. It shows a histogram.' Axis labels moved above the vertical axis and to the left of the horizontal axis. Right axis labelled. Shading changed to dotty shading. Small squares removed.	Standard mark scheme

PAPER: 1MA1/3H			
Question		Modification	Mark scheme notes
18		Wording added 'Look at the diagram for Question 18 in the Diagram Book. You may be provided with a model.' Wording 'The diagram shows a cube.' changed to 'The diagram and the model show a cube ABCDEFGH.' A dotty line joining A to H. Diagram enlarged. Model provided with AH joined.	Standard mark scheme
19		Wording added 'Look at the diagram for Question 19 in the Diagram Book.' Diagram enlarged. Shading removed, ABCDEF shaded instead with dotty shading. Add wording 'ABCDEF is a shaded regular...'. Wording 'shaded' changed to 'unshaded'. ' x ' labelled in between AF and FE.	Standard mark scheme
20		Options stacked vertically.	Standard mark scheme
21		Wording added 'Given that'. The letter c changed to p. The letter d changed to q.	Standard mark scheme but note the changes in letters.

