

GCSE Mathematics (Linear)

Higher Tier Paper 1 Mark scheme

43651H November 2015

Version 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	e.g. accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416
Q	Marks awarded for quality of written communication
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 1 Higher Tier

Q Answer Mark Comments	
------------------------	--

	270 ÷ (3 + 2 + 1)	M1		
	45	A1	No wrong working seen	No wrong working seen
			ft their 45 if all values co	prrectly evaluated
			Values must be written	in order
	135, 90, 45	A1ft	Correct answer only full	marks
		7,111	Incorrect answer only w is not M1, A1	ith 45 as a part ratio
			NB Build up method mu	ist be fully correct
	Ac	ditional G	uidance 1	
	Be careful of correct answers from wro	ng work.		
	eg 270 ÷ 3 = 90, 270 ÷ 2 = 135, 270 ÷	1 = 270	135 : 90 : 270	MO
	eg 270 ÷ 3 = 90, 270 ÷ 2 = 135, 90 ÷ 2 = 45, 135 : 90 : 45			MO
	270 ÷ 6 = 35			M1, A0
1	105 : 70 : 35			A1ft
	270 ÷ 6 = 45			M1, A1
	145 : 90 : 45			A0
	270 ÷ 6 = 45			M1, A1
	45 : 135 : 90			A0
	270 ÷ 6 = 41.2			M1, A0
	123.2 : 82.4 : 41.2			A0ft
	270 ÷ 6 = 41.2		M1, A0	
	123.6 : 82.4 : 41.2 Ignore rounding		Ignore rounding after correct ft	A1ft
	124 : 82 : 41			
	270 ÷ 6 = 41.2 Answer do not ft.		M1, A0	
	124 : 82 : 41 No intermediate values			A0ft
	135 : 45 : 90 No working, not order		No working, not in order	МО

	Additional Guidance 2			
	145 : 90 : 45	No working, not correct	MO	
4	3 + 2 + 1 = 5	· · · ·		
1	270 ÷ 5 = 54		M1, A0	
	162 : 108 : 54		A1ft	
	270 ÷ 5 = 54 162 : 108 : 54		MO	

Q	Answer	Mark	Comments	5	
		•			
	4x - 1 = 14x or $4x - 1 = 7 \times 2x$ or $\frac{4x}{7} - 2x = \frac{1}{7}$ or $2 - \frac{1}{2x} = 7$	M1	Allow one error		
	10x = -1 or $-\frac{10x}{7} = \frac{1}{7}$ or $2x = -\frac{1}{5}$	A1	oe		
2	$-\frac{1}{10}$	A1ft	ft their equation if M awarde error	d and at most 1	
	Additional Guidance				
	$\frac{4x}{7} - 1 = 2x, -\frac{10x}{7} = 1, x = -\frac{7}{10}$			M1, A0 A1ft	
	$4x - 1 = 9x, -5x = 1, x = -\frac{1}{5}$			МО	
	4x - 1 = 2x + 7			MO	
	$\frac{4x}{7} - 1 = 2x, -\frac{18x}{7} = 1, x = -\frac{7}{18}$			M1, A0, A1ft	
	$\frac{4x-1}{2x} = 7, \frac{1}{2x} - 2 = -7, \frac{1}{2x} = -9,$	$x = -\frac{1}{18}$		M1, A0 A0	

Q	Answer	Mark	Comments
	150 + 60 × 6 or 510	M1	ое
	0.2 $ imes$ 600 or 120 or 0.8 $ imes$ 600 or 480	M1	oe If a 'build up' method used to work out 20% or 80%, must be a fully correct method
	720 ÷ 4 or 180 or 720 ÷ 4 \times 3 or 540	M1	oe If a 'build up' method used to work out 25% or 75%, must be a fully correct method
	510 and 480 and 540	A1	
	Correct conclusion based on their three values with at least 2 of 510, 480 or 540 correct	Q1ft	Strand (iii)
	Ad	ditional	Guidance
	150 + 360 = 510 $0.2 \times 600 = \pounds120$		M1 M1 M1
	$720 \div 4 \times 3 = \text{\pounds}540$	A0 Q1	
3	Shop B		
	150 + 360 = 410	M1 M1	
	$0.8 \times 600 = $ £480	M1	
	$720 \div 4 = \pounds 180$	AO	
	Shop C	Q0	
	150 + 60 = £210	MO	
	$0.8 \times 600 = $ £480		M1 M1
	$720 \div 4 \times 3 = \text{\pounds}540$		A0
	Shop A	Q1	
	Examples of build up		
	10% = 60, 2 × 60 = £120		M1
	$10\% = 600 \div 10 = 6, 2 \times 6 = \pounds 12$		M1
	10% = 7.2, 20% = 14.4, 5% = 3.6, 25% =	= 18	MO

Q Answer Mark	Comments
---------------	----------

5	Additional Guidance Circle measurement is 2.6 cm so if subtracted or added then rounded can lead to correct answer, but allow as 2.6 rounds to 3, so mark answer line, ignore any other working			
			B1 for 2 or 8 clearly shown as min or max vertical value	
	A point that lies on the circumference, eg (4, 5), (10, 5), (7, 2), (7, 8)	B2	B1 (4, y) or (10, y) or (x, 2) or (x, 8)B1 for 4 or 10 clearly shown as min or max horizontal value	

6a	20 or 20 out of 120 or 20 in 120	B1	20 120 (oe) is B0
----	--	----	----------------------

	Yes ticked	B1	If boxes blank, yes may be implied by wording	
	Valid reason eg			
	1 should be (about) 20 (but it is much lower)			
	or 6 should be (about) 20 (but it is higher)	Q1	oe Strand (i) Only award if Yes ticked or implied	
	or 6 is much higher than 1			
6b	or frequencies should be all (about) the same			
	Additional Guidance 1			
	There are 4 ways to score the Q mark			
	Comparing frequency of 1 to 20			
	Comparing frequency of 6 to 20			
	Referring to significant difference between frequency of 1 and 6			
	Referring to the fact that all frequencies	should be	the same	

	Additional Guidance 2					
	Yes ticked and:	B1				
	6 has above the average which is 20	Q1				
	6 more, 1 a lot less	Q1				
	Lands more on 6. It should land on each side about the same number	Q1				
	The range of results is too large on specific numbers (1,6) showing there is something making it land on a 6 and not a 1	Q1				
	The frequency of landing on 6 is over 7 times the frequency of it landing on 1.	Q1				
	There is a large range of 33 between the highest and lowest frequency	Q1				
6b	Because the frequency is not all the same so it isn`t fair	Q1				
	Frequency should be the same for all numbers	Q1				
	Lands more on 6	Q0				
	6 has appeared as the mode number whereas 1 is the least amount	Q0				
	Is heavier on number 6	Q0				
	Landed on 6 38 times	Q0				
	All number are about average except 1 and 6	Q0				
	Answers should be more evenly spaced out	Q0				
	Each time the number goes up, the frequency goes up	Q0				

Q	Answer	Mark	Comments

2x + 2 + 3x - 1 = 36	M1	oe		
$5x = 35$ or $x = 35 \div 5$	A1			
7	A1ft	ft on $5x = a$ ($a \neq 36$	b) or <i>bx</i> = 35 (<i>b</i> ≠ 2 or 3)	
2 × their 7 + 2 and 3 × their 7 – 1 and 4 × their 7 – 6 and 5 × their 7 + 2 If no working shown, at least 3 values must be correct for their 7	M1			
16, 20, 22 and 37 and 21 shown as median or all 4 expressions correctly evaluated and median correctly identified	A1ft	87 and median ide SC2 $2x + 2 = 36$, x 87	x = 17, values 36, 50, 62 entified as 56 x = 17, values 36, 50, 62 x = 17 (no other equation	
Additional Guidance				
As <i>x</i> is positive only the first 3 values are out it must be evaluated correctly	o find the median. I	f the 4 th value is worked		
Range is 21 so 37 – 16 = 21 is A0			1	
2x + 2 + 3x - 1 = 36 5x = 37 x = 7.4 16.8, 21.2, 23.6 22.4	-	Only first 3 values necessary M1 A0 A1ft M1 A1ft		
2 <i>x</i> + 2 = 36, <i>x</i> = 17	No oth	er equation seen	SC1	
Above and 36, 50, 62, 87			SC2	
Above and 56			SC3	
3x - 1 = 36, x = 12.33 26.66, 36, 43.32, 63.65	Decima dp or b	als must be to two	M0, A0, A0 M1	

	Additional Guidance 2			
7	2x + 2 = 36		MO	
	2 <i>x</i> = 38	Median correct but as last	A0	
	<i>x</i> = 19	value evaluated wrongly,	A0	
	36, 56, 70, 96	follow through mark is lost	M1	
	63		A0ft	
	2x + 2 + 3x - 1 = 36		M1	
	3 <i>x</i> = 39		A0	
	<i>x</i> = 13	Two errors in solving the equation	A0ft	
	28, 38, 46, 67	oquation -	M1	
	42		A1ft	

Q Answer	Mark Comments	
----------	---------------	--

	4x - 8 - 6 + 10x	M1	Four terms. Three terms co	rrect.
	4x - 8 - 6 + 10x	A1	Fully correct	
	14x - 14 or $14(x - 1)$	A1ft	ft on M awarded and at mos	st one error
	Additional Guidance			
8a	4x - 8 - 6 - 10x, $-6x - 14$			M1, A0 A1ft
	4x - 8 - 6 - 10x, $-6x - 2$			M1, A0 A0ft
	4x - 6 - 6 - 10x			MO

	2a(4a + 5b)	M1	
	3(4a + 5b)	M1	
8b	$\frac{2a}{3}$	A1	Answer only full marks
00	Additional Guidance		
	Answer can come from wrong work, eg $\frac{8a^2 + 10}{12a + 15}$		$\frac{18a}{27} = \frac{2a}{3}$

Q	Answer	Mark	Comments

	Total 100 so median 50(th) value or 50.5(th) value	M1	Check diagram for indication of 50 or cumulative totals
9a	Cumulative total their 18 + their 24 (evaluated) or 42 up to 5 or their 18 + their 24 + their 32 (evaluated) or 74 up to 6	M1	18, 42, 74, 94, 100
	5.25	A1	oe accept 5.25 – 5.27

9b	20 in 6 to 7 bar so 6.8 is $\frac{4}{5}$ of 20 = 16 or $\frac{1}{5}$ of 20 = 4	M1	May need to check diagram in (a)
	4 + 6 or 10	A1	
	35	A1ft	ft their value for men plus 25 SC1 25 for number of Women > 6.8

Q	Answer	Mark	Comments

	170	B1	
10a	Angle at centre twice angle at circumference (or perimeter) (on same arc)	B1	Must mention centre and circumference

	54	B1	
10b	Opposite angles in cyclic quadrilateral (add up to 180)	B1	Must mention opposite and cyclic

	ZXY stated or shown to be 90 – 63 or 27	M1			
	27	A1	Answer only M0A0		
	Ado	litional G	uidance 1		
10c	Correct answer is common from wrong work. Correct working must be seen. Any indication of wrong working or wrong angles marked is M0				
	Z (63) Y	И of	ssumes <i>ZX</i> bisects /ZY and intersection chords is a right ngle	МО	

		Additional	Guidance 2	
10c	Z 63 Y	180 – 126 = 54 54 ÷ 2 = 27	Assumes ZX bisects WZY and triangle WZY is isosceles	MO
	27 27 27 27 27 27 27 27 27 27 27 27 27 2		Assumes <i>WZY</i> is a right angle and <i>ZWP</i> is isosceles.	MO

		I	
Q	Answer	Mark	Comments

	Alternative method 1				
	14x + 6 < 4x - 1	M1			
	10x < -7	A1	ое		
	<i>x</i> < -0.7	A1ft	ft on one rearrangement error Must have $x <$ Do not award if wrong inequality \leq , \geq or > SC1 for $x < -0.4$ from $14x + 3 < 4x - 1$		
11	Alternative method 2				
	7x + 3 < 2x - 0.5	M1			
	5x < -3.5	A1			
	<i>x</i> < -0.7	A1ft	ft on one rearrangement error Must have $x <$ Do not award if wrong inequality $\leq \geq $ or > SC1 for $x < -0.8$ from $7x + 3 < 2x - 1$		

	Additional Guidance 1			
	14x + 6 = 4x - 1 10x = -7 x = -0.7 x < -0.7	M0 until recovered then full marks		
11	14x + 6 < 4x - 1 10x < -7 < -0.7	M1 A1 A0		
	14x + 3 < 4x - 1 10x < -4 x < -0.4	SC1		

	Additional Guidance 2				
	$ \begin{array}{r} 14x + 3 < 4x - 1 \\ 18x < -4 \\ x < -\frac{2}{9} \end{array} $	MO			
11	$ \begin{array}{l} 14x + 6 < 4x - 1 \\ 18x < -7 \\ x < -\frac{7}{18} \end{array} $	M1 A0 A1ft			
	7x + 3 < 2x - 1 5x < -4 x < -0.8	SC1			

Q	Answer	Mark	Comments
12a	$10^2 - 3^2$ or 91 or 100 – 9 or $y^2 + 3^2 = 10^2$	M1	Accept any letter
	√91	A1	Ignore any attempt to evaluate SC1 $\sqrt{109}$

12b	$\frac{3}{\sqrt{91}}$		ft their length y ignore any misuse of tan, eg tan $(\frac{3}{\sqrt{91}})$ or tan ⁻¹ $(\frac{3}{\sqrt{91}})$
-----	-----------------------	--	---

Q	Answer	Mark	Comments
---	--------	------	----------

13	n and n + 1 seen	M1	Two consecutive integers expressed algebraically, eg $n-1$ and n
	$(n + 1)^2 - n^2$	M1dep	Subtraction of their consecutive integers squared
	$n^2 + 2n + 1 - n^2$	A1	Correct expansion
	2n + 1 and explanation why this expression must be odd	Q1	Strand (i). Explanation why their expression must be odd

14a	2 b – 2 a or –2 a + 2 b	R1	
14a	or 2(b – a) or 2(– a + b)	Ы	

	Alternative method 1			
	MA + AN or $\frac{1}{2}OA + \frac{1}{2}AB$ or $\mathbf{a} + \frac{1}{2}$ their(2 $\mathbf{b} - 2\mathbf{a}$)	M1	oe	
	a + b – a	A1		
14b	Alternative method 2			
	(<i>M</i> is midpoint of <i>OA</i> and <i>N</i> is midpoint of <i>AB</i>) (hence) $MN = \frac{1}{2}OB$	M1		
	$MN = \frac{1}{2} \times 2\mathbf{b}$	A1	By midpoint theorem, triangle <i>AOB</i> is an enlargement sf 2 of triangle <i>AMN</i> is M1, A1	

Q	Answer	Mark	Comments
	·		
	Alternative method 1		
14c	Common angle <i>MAN</i> or (Angle) <i>AMN</i> = (Angle) <i>AOB</i> because corresponding or (Angle) <i>ANM</i> = (Angle) <i>ABO</i> because corresponding Sides in ratio 1 : 2	B1 B1	Must be a specific angle shown to be common and if not <i>MAN</i> then reason ie corresponding must be stated Check diagram if reference to say, ' <i>x</i> is a common angle' oe eg scale factor 2
	Alternative method 2		
	$\overrightarrow{OB} = 2\overrightarrow{MN}$ and $\overrightarrow{OA} = 2\overrightarrow{OM}$	B2	Any two sides shown to be parallel vectors $\rightarrow \rightarrow $

15a 75	B1
---------------	----

			B2 for 2 terms correct
15b	$8 x^3 y^9$	B3	B1 for one term correct
			SC1 for 2 $x y^3$

16a Graph of $y = x^3$	B1	Must be in 1st and 3rd quadrants.
-------------------------------	----	-----------------------------------

16b	Graph of $y = x^2 + 3$		3 need not be marked as long as graph is roughly symmetrical and crosses <i>y</i> -axis above origin
-----	------------------------	--	--

16c G	Graph of $y = \frac{1}{x}$	B1	Must be in 1st and 3rd quadrants
--------------	----------------------------	----	----------------------------------

Q	Answer	Mark	Comments
	_		
	$y \alpha \frac{1}{x} \text{ or } y = \frac{k}{x}$	M1	oe $xy = k \ 2 \ \alpha \ \frac{1}{5}$ or $2 = \frac{k}{5}$
17	<i>k</i> = 10	A1	oe $2 = \frac{10}{5}$
	$xy = 10 \text{ or } y = \frac{10}{x} \text{ or } x = \frac{10}{y}$	A1	ое

18a 2 B1	
-----------------	--

18b 170	B1
----------------	----