Write your name here Surname	Oth	er names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Chemistr Unit: 4CH0 Science (Double Av Paper: 1CR		
Tuesday 13 May 2014 – M Time: 2 hours	orning	Paper Reference 4CH0/1CR 4SC0/1CR
You must have: Ruler Calculator		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

0	Helium 22	20 Neon 10 Argon 18	84 Krypton 36	131 Xenon 54	222 Radon 86		
7		Fluorine 9 35.5 Chtorine 17	80 Bromine 35	127 Iodine 53	210 At Astatine 85		
Q		16 Sultur Sultur 16	79 Selenium 34	128 Te 52	Polonium 84		
ъ		Nitrogen 7 31 15 15	75 AS Arsenic 33	122 Sb 51	209 Bis nut 83 83		
4		14 Silicor Silicor 14 Silicor 14 C 28 C 6 C C C C C C C C C C C C C C C C C C	73 Germanium 32	t Superson	207 Pb B2 B2		
e		11 Boron 5 13 Aluminium 13		115 Indium 49	204 Thallium 81		
		L	65 Zn ^{Zinc} 30	112 Cadmium 48	201 Mercury 80		
			63.5 Cu Copper 29	108 Ag 47	197 Au Gold 79		
			28 Nickel 28 28	106 Pd Palladium 46	195 Platinum 78		
			59 Cobait 27		192 Tidium 77		
			Se Fe	101 Ruthenium 44	Osmium 76 76		bermic
Group	Hydrogen		55 Mn Manganese 25	99 TC Technetium 43	186 Rhenium 75	Key	Relative atomic mass Symbol Name Atomic number
			52 Cr Chromium 24	96 99 Mo Molybdenum Technetium 42	184 V 74 74		
			51 V Vanadium 23	93 Niobium 41	181 Tantalum 73		
			48 Ti 22	91 Zr Zirconium 40	Hathium 72		
			45 Scandium 21	89 Yttrium 39	139 Lanthanum 57 227 AC Actinium 89		
N		9 Beryllium 4 Mg Magnesium 12	40 Cakcium 20	88 Strontium 38	137 Barlum 56 226 Radium 88		
*		23 Sodium 11 12 13 13 14 14	39 K Potassium 19	86 Rubidium 37	133 CS Caesium 55 223 223 Francium 87		
		ς η η η η η η η η η η η η η η η η η η η	4	S	10 N	-	

SN Downloaded from: shawonnotes.com

P 4 3 5 3 0 A 0 2 3 6

2

THE PERIODIC TABLE

these	thre	e states a	are sho	wn in the	boxes	exist in th					
The nu	umb	ers 1, 2, 3	3 and 4	represen	t chan	iges of stat	e.				
]	1	>]	3	\rightarrow		
		ice	_←	2		water	_	4		steam	
(a) Th	e pa	articles of	^F H ₂ O ar	re arrange	ed diffe	erently in e	ach sta	te.			
(i)	In	which sta	ate are	the partic	les fui	rthest apar	t?				(1)
											(1)
(ii)	In	which sta	ate do t	he partic	les hav	ve the least	. eneral	רע?			
(11)		which st					. energy				(1)
(iii) In	which sta	ate are	the partic	les arr	anged in a	regula	r pattern?			(1)
(b) (i)	Ch	ange of s	state 1 i	is called							
\times	A	boiling									(1)
\times	В	conden	sing								
\times	С	freezing	I								
\times	D	melting									
(ii)	Ch	ange of s	state 4 i	is called							
	-	1									(1)
	A	boiling									
	B										
\times		freezing melting									
\mathbf{X}		maiting									

(1)

- A crystallisation
- **B** filtration
- C fractional distillation
- **D** simple distillation

(c) Food colourings contain one or more food dyes.

A student used paper chromatography to separate the dyes contained in food colourings. She placed spots of three known food colourings (E, F and G) and one unknown food colouring (H) on the chromatography paper.

The diagram shows the appearance of the paper before and after her experiment.

P 4 3 5 3 0 A 0 8 3 6

(ii) Suggest why food colouring F did not move during the experiment (iii) How many food dyes are there in food colouring E? (iv) How many known food dyes are there in food colouring H? (v) Dyes are often identified by their R_t values. $R_f = \frac{\text{distance moved by dye}}{\text{distance moved by solvent}}$ Record the results for the dye in G and calculate its R_t value. $\frac{\text{distance moved by dye in mm}}{\text{distance moved by solvent in mm}}$ R_t value of G (Total for Question)	SN	ownloaded from: shawonnotes.cc
(iv) How many known food dyes are there in food colouring H? (v) Dyes are often identified by their R_f values. $R_f = \frac{\text{distance moved by dye}}{\text{distance moved by solvent}}$ Record the results for the dye in G and calculate its R_f value. $\frac{\text{distance moved by dye in mm}}{\text{distance moved by solvent in mm}}$	nt.	(1)
(v) Dyes are often identified by their R_f values. $R_f = \frac{\text{distance moved by dye}}{\text{distance moved by solvent}}$ Record the results for the dye in G and calculate its R_f value. $\frac{\text{distance moved by dye in mm}}{\text{distance moved by solvent in mm}}$		(1)
$R_{\rm f} = \frac{\text{distance moved by dye}}{\text{distance moved by solvent}}$ Record the results for the dye in G and calculate its $R_{\rm f}$ value. $\frac{\text{distance moved by dye in mm}}{\text{distance moved by solvent in mm}}$		(1)
distance moved by solvent in mm <i>R</i> _f value of G		(3)
R _f value of G		
(Total for Questic		

	SN Downloaded from: shawonnotes.com
(b) Zinc can be used to coat iron nails to prevent them from rusting.	
(i) What is the name of this process?	(1)

(ii) If the layer of zinc on the nail is scratched, sacrificial protection prevents the iron
from rusting.

Explain, with the help of two ionic half-equations, how this type of sacrificial protection works.

Use symbols from the box in your equations. You may use each symbol once,

more than	once or	not at	all.						
	Fe	Zn	Fe ²⁺	Zn ²⁺	e⁻	+	_	\rightarrow	
									(4)
									11
		P 4	3 5	3 0 A	0 1	1 3	ⅢⅢ Ⅲ		Turn over

(c) Electroplating is another method of rust prevention.
This apparatus can be used to electroplate an iron nail.
copper rod iron nail copper(II) sulfate solution
(i) Equation 1 shows the reaction at the copper rod.
Equation 1 $Cu \rightarrow Cu^{2+} + 2e^{-}$
Name this type of reaction, giving a reason for your answer. (2)
type of reaction
reason
(ii) Equation 2 shows the reaction at the iron nail. Equation 2 $Cu^{2+} + 2e^- \rightarrow Cu$ Use equations 1 and 2 to explain why the colour of the copper(II) sulfate solution does not change during the experiment. (2)
(Total for Question 3 = 12 marks)
$\begin{array}{c} 12 \\ \hline \\ P 4 3 5 3 0 A 0 1 2 3 6 \end{array}$

	(SN) Downloaded from: shawonnotes.co
This question is about elements in Group 1 of the Periodic Table.	
This question is about elements in Group 1 of the Periodic Table.	
(a) Which statement about lithium is correct?	(1)
A It is a good electrical conductor and forms an acidic oxide	-
B It is a poor electrical conductor and forms an acidic oxide	
C It is a good electrical conductor and forms a basic oxide	
D It is a poor electrical conductor and forms a basic oxide	
(b) A small piece of sodium is added to a large trough of water.	
(i) State two observations that could be made.	
	(2)
(ii) Complete the equation for this reaction by inserting the appropriate of the appropriate of the second state of the secon	(2)
(c) Potassium reacts in a similar way to sodium, but is more reactive.	
State one observation that could be made when a small piece of pot	assium is
added to a large trough of water, but would not be observed with so	odium. (1)
(d) Explain why elements in Group 1 have similar reactions.	(1)

- **5** This question is about elements in Group 7 of the Periodic Table.
 - (a) Complete the table to show the physical state at room temperature of fluorine and astatine, and the colour of liquid bromine.

(2)

Element	Colour	Physical state at room temperature
fluorine	pale yellow	
chlorine	pale green	gas
bromine		liquid
iodine	dark grey	solid
astatine	black	

(b) Chlorine reacts with hydrogen to form hydrogen chloride.

A piece of magnesium ribbon is added to hydrogen chloride in three separate experiments under different conditions.

The table below shows the observations made under these different conditions.

Experiment	Conditions	Observations
1	Hydrogen chloride gas	No visible change
2	Hydrogen chloride dissolved in water	The magnesium ribbon gets smaller and bubbles are seen
3	Hydrogen chloride dissolved in methylbenzene	No visible change

(i) Write the formulae of two ions formed in the solution produced in experiment 2.

(2)

Positive ion

Negative ion

(ii) Identify the gas formed in experiment 2 and give a test for it.	(2)
gas	
test	
(iii) Silver nitrate solution and dilute nitric acid are added to the solution produced in experiment 2.	
State what is observed and name the substance responsible for this observatio	n.
Explain why dilute nitric acid is added.	(2)
observation	(3)
substance responsible	
explanation	
(iv) Explain why there is no reaction in experiment 3.	(1)
(Total for Question 5 = 10 ma	rks)

boiling point	
 size of molecules 	
• viscosity	(3)
	17
	Turn ove

(b) Some of the fractions are catalytically cracked. The general equation for some re in this process is	actions		
alkane \rightarrow alkane + alkene			
(i) State two conditions used in catalytic cracking.	(2)		
2			
2			
(ii) How does the bonding in an alkene molecule differ from the bonding in an alkane molecule?	(1)		
(iii) The chemical equation for one cracking reaction is $C_{16}H_{34} \rightarrow C_8H_{18} + 2C_3H_6 + \text{ compound Q}$ Deduce the molecular formula of Q.	(1)		
18 P 4 3 5 3 0 A 0 1 8 3 6			

7 Hydrogen peroxide solution decomposes very slowly at room temperature.

The equation for this reaction is

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

Very few bubbles can be seen in the solution because of the slow decomposition.

The rate of this reaction is greatly increased by adding a catalyst.

(a) A student added a solid to some hydrogen peroxide solution to see if the solid acted as a catalyst.

He noticed that a lot of bubbles formed, and that the solid was still present at the end of the reaction.

Outline a method to show that the solid acted as a catalyst and not as a reactant.

SN	Downloaded from: shawonnotes.com
----	-------------------------------------

	e student investigated the effect that changing the concentration of the drogen peroxide solution has on the rate of the reaction.	
He	e used solid manganese(IV) oxide as the catalyst in each experiment.	
Th	is is the method he used.	
• • •	pour some hydrogen peroxide solution into a conical flask on a top-pan balar add the catalyst and place some cotton wool loosely in the neck of the flask record the balance reading and start a timer record the balance reading every minute until the mass no longer changes	nce
•	repeat the experiment several times using different concentrations of hydrogen peroxide solution	
(i)	State one property of each substance that the student should keep the same in each experiment.	
		(2)
ydrogen	peroxide solution	
nangane	se(IV) oxide	
(ii)	What is the purpose of the cotton wool?	(1)

(3)

(e) Another student repeated the investigation.

She recorded the time for the total mass of the beaker and contents to decrease by 0.50 g in each experiment. She then converted the times to relative rates of reaction.

The table shows the concentrations she used and the relative rates of reaction she calculated.

Relative rate of reaction	1.5	2.2	3.0	4.4	5.1	6.0	7.4
Concentration in mol/dm ³	0.40	0.60	0.80	1.20	1.40	1.60	2.00

Plot a graph of these results on the grid.

Draw a straight line of best fit through the points.

P 4 3 5 3 0 A 0 2 4 3 6

(f) Explain, in terms of particles, why the rate of of a reactant increases.	f a reaction increases as the concentration	
	(2)	
	(Total for Question 7 = 16 marks)	
		2

 8 (a) The flow chart shows how ammonia is made using the Haber process. nitrogen
heated catalyst cooler ammonia
(i) State one raw material that is used as the source of (2) nitrogen
hydrogen
(ii) Identify the catalyst and state the pressure, in atmospheres, used in the Haber process. (2)
catalyst
pressure
(iii) Which substances pass from the cooler to the heated catalyst? (1)
A ammonia, hydrogen and nitrogen
B hydrogen only
C hydrogen and nitrogen
D nitrogen only
(iv) When ammonia leaves the cooler it is (1)
A an aqueous solution
B a gas
C a liquid
D a solid

- (b) Hydrazine (N_2H_4) is a useful compound that can be manufactured from ammonia.
 - (i) Hydrogen peroxide can be used to convert ammonia to hydrazine.

Balance the equation for this reaction.

 $\dots \mathbb{N} \mathbb{H}_3 + \dots \mathbb{H}_2 \mathbb{O}_2 \rightarrow \dots \mathbb{N}_2 \mathbb{H}_4 + \dots \mathbb{H}_2 \mathbb{O}_2$

(ii) The bonding in ammonia and hydrazine can be represented by dot and cross diagrams. The diagram for ammonia has been drawn.

All the bonds in hydrazine are single bonds. Complete the diagram for hydrazine. Show only the outer electrons.

(2)

(1)

ammonia	hydrazine	
H o x	нн	
H × N °	N N	
∘× H	нн	

(c) Hydrazine was used as the fuel in the first rocket-powered fighter aircraft in World War II.

It is now used as a propellant in spacecraft. It slowed the descent of the Phoenix spacecraft as it landed on Mars.

The equations for its use as a rocket fuel and as a propellant are shown in the table.

Use	Equation	∆ <i>H</i> in kJ/mol
rocket fuel	$N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$	-660
propellant	$N_2H_4 \rightarrow N_2 + 2H_2$	-50

(i) How does the information in the table show that both reactions are exothermic?

(1)

(ii) Why is it not correct to describe hydrazine as a fuel when it is used as a propellant? (1)

(d) Some spacecraft use MMH, a compound similar to hydrazine, as a prop the composition by mass of 26.1% carbon, 60.9% nitrogen and 13.0%	
(i) Calculate the empirical formula of MMH.	
	(3)
empirical for	nula
(ii) The M_r of MMH is 46	
What is the molecular formula of MMH?	(1)
(Total for Question	n 8 = 15 marks)

nloaded from: shawonnotes.com (iii) The melting point of molybdenum oxide suggests that it has ionic bonding. However, it is often represented as a molecular structure. Deduce the molecular formula of molybdenum oxide as shown in this structure. 0 0 (1) (c) The metallic structure of molybdenum gives it some typical properties. (i) Describe the metallic structure of molybdenum. (2) (ii) Explain why molybdenum is a good conductor of electricity. (2) (iii) Explain why molybdenum is malleable. (2) (Total for Question 9 = 12 marks) 31

3 5 3 0 A 0 3 1

ownloaded from

4 3 5 3 0 A 0 3 2 3 6

(c) In an experiment using a different metal oxide, a mass of 2.8 g of metal is obtaine from 3.6 g of the metal oxide.	d	
(i) Calculate the mass of oxygen in the sample of the metal oxide.	(1)	
mass of oxygen =		g
(ii) Calculate the amount, in moles, of oxygen atoms in the sample of the metal o		
amount of oxygen =		mol
(iii) The formula of the metal oxide is MO, where M is the symbol of the metal.		
Deduce the amount, in moles, of M in the sample of the metal oxide.	(1)	
amount of M =		mol
(iv) What is the relative atomic mass of M?	(2)	
relative atomic mass of M =		
(Total for Question 10 = 10 ma	arks)	
TOTAL FOR PAPER = 120 MA	RKS	

SN Downloaded from: shawonnotes.com

BLANK PAGE

