4767

4767 Statistics 2

Question 1

	since the values of x are chosen by the student	B1 E1 dep	
	but the values of y are dependent on x	E1 dep	3
(ii)	$\bar{x} = 2.5, \ \bar{y} = 80.63$	B1 for \overline{x} and \overline{y} used	
	$b = \frac{Sxy}{Sxx} = \frac{2530.3 - 30 \times 967.6/12}{90 - 30^2/12} = \frac{111.3}{15} = 7.42$	(SOI) M1 for attempt at gradient	
		(b)	
	OR $b = \frac{2530.3/12 - 2.50 \times 80.63}{90/12 - 2.50^2} = \frac{9.275}{1.25} = 7.42$	A1 for 7.42 cao	
	Hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$	M1 for equation of line	
	$\Rightarrow y - 80.63 = 7.42(x - 2.5) \Rightarrow y = 7.42x + 62.08$	A1 FT (<i>b</i> >0) for complete equation	5
(iii)	(A) For $x = 1.2$, predicted growth = 7.42 × 1.2 + 62.08 = 71.0 (B) For $x = 4.3$, predicted growth = 7.42 × 4.3 + 62.08 = 94.0	M1 for at least one prediction attempted. A1 for both answers (FT their equation if <i>b</i> >0)	
	Valid relevant comments relating to the predictions such as : Comment re interpolation/extrapolation Comment relating to the fact that $x = 4.3$ is only just beyond the existing data. Comment relating to size of residuals near each predicted value (need not use word 'residual')	E1 (first comment) E1 (second comment)	4
(iv)	$x = 3 \Rightarrow$ predicted y = 7.42 x 3 + 62.08 = 84.3 Residual = 80 - 84.3 = -4.3	M1 for prediction M1 for subtraction A1 FT (<i>b</i> >0)	3
(v)	This point is a long way from the regression line. The line may be valid for the range used in the experiment but then the relationship may break down for higher concentrations, or the relationship may be non linear.	E1 E1 for valid in range E1 for <i>either</i> 'may break down' <i>or</i> 'could be non linear' <i>or</i> other relevant comment	3

4767

Question 2

(i)	Binomial (94,0.1)	B1 for binomial	
.,		B1 dep for parameters	2
(ii)	<i>n</i> is large and <i>p</i> is small	B1, B1 Allow	
. ,	•	appropriate numerical	
		ranges	2
(iii)	$\lambda = 94 \times 0.1 = 9.4$	B1 for mean	
	$0.4 9.4^4$		
	(A) $P(X = 4) = e^{-9.4} \frac{9.4^4}{4!} = 0.0269 (3 \text{ s.f.})$	M1 for calculation or	
		use of tables	
	or from tables = $0.0429 - 0.0160 = 0.0269$ <i>cao</i>	A1	
	(B) Using tables: $P(X \ge 4) = 1 - P(X \le 3)$	M1 for attempt to find $P(X > 4)$	_
		P(X≥4) A1 cao	5
	= 1 - 0.0160 = 0.9840 <i>cao</i>	ATCao	
(iv)	P(sufficient rooms throughout August)	M1	
	$= 0.9840^{31} = 0.6065$	A1 FT	2
(v)	(A) $31 \times 94 = 2914$	B1 for binomial	
	Binomial (2914,0.1)	B1 dep, for parameters	2
	(D) Les Normal annex with	B1	
	(<i>B</i>)Use Normal approx with $\mu = np = 2914 \times 0.1 = 291.4$	ы	
	$\mu = np = 2914 \times 0.1 = 291.4$ $\sigma^2 = npq = 2914 \times 0.1 \times 0.9 = 262.26$	B1	
	$0 = 100 = 2014 \times 0.1 \times 0.9 = 202.20$	Ы	
	$\begin{pmatrix} 200.5 & 201.4 \end{pmatrix}$	B1 for continuity corr.	
	$P(X \le 300.5) = P\left(Z \le \frac{300.5 - 291.4}{\sqrt{262.26}}\right)$	M1 for probability	
	$\sqrt{262.26}$	using correct tail	5
	$= P(Z \le 0.5619) = \Phi(0.5619) = 0.7130$	A1 cao, (but FT wrong	5
		or omitted CC)	
		, ,	18

Question 3

(i)	$X \sim N(56, 6.5^2)$		
	$P(52.5 < X < 57.5) = P\left(\frac{52.5 - 56}{6.5} < Z < \frac{57.5 - 56}{6.5}\right)$	M1 for standardizing	
	= P(−0.538 < Z < 0.231)	A1 for -0.538 and 0.231	
	$= \Phi(0.231) - (1 - \Phi(0.538))$ = 0.5914 - (1 - 0.7046) = 0.5914 - 0.2954	M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	
	= 0.2960 (4 s.f.) <i>or</i> 0.296 (to 3 s.f.)		4
(ii)	P(5-year-old < 62) = P $\left(Z < \frac{62 - 56}{6.5}\right)$		
	= Φ(0.923) = 0.8220	B1 for 0.8220 or 0.1780	
	P(young adult < 62) = P $\left(Z < \frac{62 - 68}{10}\right)$	B1 for 0.2743 or 0.7257	
	$= \Phi(-0.6) = 1 - 0.7257 = 0.2743$ P(One over, one under) = 0.8220 × 0.7257 + 0.1780 × 0.2743 = 0.645	M1 for either product M1 for sum of both products A1 CAO	5
(iii)		G1 for shape G1 for means, shown explicitly or by scale G1 for lower max height in young adults G1 for greater variance in young adults	4
(iv)	Y ~ N(82, σ^2) From tables $\Phi^{-1}(0.88) = 1.175$ $\frac{62 - 82}{\sigma} = -1.175$ $-20 = -1.175 \sigma$	B1 for 1.175 seen M1 for equation in σ with z-value M1 for correct handling	
	σ = 17.0	of LH tail A1 cao	4
			17

Question 4

H₁: some						
OBS	Math s	English	Both	Neither	Row sum	
Male	38	19	6	32	95	
Female	42	55	9	49	155	
Col	80	74	15	81	250	
sum						
						M1 A2 for expected values
EXP	Maths	English	Both	Neither	Row	(allow A1 for at least
					sum	one row or column
Male	30.40	28.12	5.70	30.78	95	correct)
Female	49.60	45.88	9.30	50.22	155	
Col	80	74	15	81	250	M1 for valid attempt a (O-E) ² /E
sum						
						NB These M1 A1 marks
CONT	Math	s End	lish	Both	Neither	cannot be implied by a correct final value of X ²
Male	1.90		58	0.016	0.048	-
Female						
X ² = 7.94		5 1.8	313	0.010	0.030	M1 for summation A1 cao for X ² B1 for 3 deg of f B1 CAO for cv
$X^2 = 7.94$ Refer to χ Critical va Result is There is e	,2 3 lue at 5% significan evidence	6 level = 7 t to sugges	7.815 st that th	nere is so	me	A1 cao for X^2 B1 for 3 deg of f
$X^2 = 7.94$ Refer to χ Critical va Result is There is e association NB if H ₀ H	,2 3 lue at 5% significan evidence on betwee reversed	6 level = 7 t to sugges en sex an	7.815 st that th d subje	nere is so ct choice.	me	A1 cao for X ² B1 for 3 deg of f B1 CAO for cv B1 E1
$X^2 = 7.94$ Refer to χ Critical va Result is There is e association NB if H ₀ H ₂ irst B1 or H ₀ : $\mu = 67$	^{,2} lue at 5% significan evidence on betwee reversed inal E1 7.4; H ₁ : J	$\frac{1}{6}$ level = $\frac{1}{7}$ to sugges en sex an , or 'correla u >67.4	7.815 st that th d subje ation' mo	nere is so ct choice. entioned, c	me do not award	A1 cao for X ² B1 for 3 deg of f B1 CAO for cv B1 E1
$X^2 = 7.94$ Refer to χ Critical va Result is There is e associatio NB if H ₀ H <u>irst B1 or</u> H ₀ : $\mu = 67$ Where μ	^{,2} ilue at 5% significan evidence n betwee reversed final E1 7.4; H ₁ : J denotes t	$\frac{1}{6}$ level = $\frac{1}{7}$ to sugges en sex an , or 'correla u >67.4	7.815 st that th d subje ation' me score o	nere is so ct choice entioned, c	me	A1 cao for X ² B1 for 3 deg of f B1 CAO for cv B1 E1
Refer to χ Critical va Result is Result is There is e associatio NB if H ₀ H irst B1 or H ₀ : $\mu = 67$ Where μ o students t	² ilue at 5% significan evidence reversed inal E1 2.4; H ₁ : J denotes t aught wit	6 level = 7 t to sugges en sex an , or 'correla u > 67.4 he mean th the nev	7.815 st that th d subje ation' me score o v metho	nere is so ct choice entioned, c	me do not award	A1 cao for X ² B1 for 3 deg of f B1 CAO for cv B1 E1 B1 B1 for both correct
Refer to χ Critical va Result is Result is There is e associatio NB if H ₀ H irst B1 or H ₀ : $\mu = 67$ Where μ o students t	² ilue at 5% significan evidence reversed inal E1 2.4; H ₁ : J denotes t aught wit	% level = 7 it to sugges en sex an , or 'correla w >67.4 he mean th the new 3-67.4 $9/\sqrt{12}$	7.815 st that th d subje ation' me score o v metho	nere is so ct choice entioned, c	me do not award	A1 cao for X^2 B1 for 3 deg of f B1 CAO for cv B1 E1 B1 B1 B1 B1 for both correct B1 for definition of μ
$X^2 = 7.94$ Refer to χ Critical va Result is There is e associatio NB if H ₀ H first B1 or Where μ of students to Test statis	f_3^2 significant evidence on betweet reversed 7.4; H ₁ : <i>J</i> denotes t aught with stic = $\frac{68}{8}$ = 0.3	6 level = 7 t to sugges en sex an , or 'correla u > 67.4 he mean th the new $\frac{3-67.4}{9/\sqrt{12}}$ 5 critical va	7.815 st that the subject of sub	nere is so ct choice. entioned, c of the pop od.	me do not award	A1 cao for X^2 B1 for 3 deg of f B1 CAO for cv B1 E1 B1 B1 B1 B1 B1 for both correct B1 for definition of μ M1
$X^2 = 7.94$ Refer to χ Critical va Result is There is e associatio NB if H ₀ H first B1 or H ₀ : $\mu = 67$ Where μ o students f Test statis 10% leve 0.35 < 1.2 There is i	f_{3}^{2} lue at 5% significant evidence on betweet reversed inal E1 7.4; H ₁ : <i>j</i> denotes t aught with stic = $\frac{68}{8}$. = 0.3 1 tailed 282 so not nsufficier	6 level = 7 t to sugges en sex an , or 'correla u > 67.4 he mean th the new $\frac{3-67.4}{9/\sqrt{12}}$ 5 critical va t significat t evidenc	7.815 at that the subject of sub	here is so ct choice. entioned, c of the pop od. = 1.282 ect H ₀	me do not award	A1 cao for X^2 B1 for 3 deg of f B1 CAO for cv B1 E1 B1 B1 B1 B1 B1 B1 for both correct B1 for definition of μ M1 A1 cao B1 for 1.282 M1 for comparison

53