

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3				
Q	Solution	Marks	Total	Comments
1(a)	f(2) = -1	2.61		
	f(2.1) = +0.161	M1		both attempted
	change of sign $\therefore 2 < \alpha < 2.1$	A1	2	
(b)	$x^3 - x - 7 = 0$			
	$x^{3} = x + 7$ $x = \sqrt[3]{x+7}$			
	$x = \sqrt[3]{x+7}$	B1	1	AG
	2			
(c)	$x_1 = 2$	M1		
	$x_2 = 2.0801$	A1		AWRT 2.08
	$x_3 = 2.0862$			AWRT 2.09
	$x_4 = 2.09$	A1	3	
	Total		6	
2(a)	$y = \left(3x - 1\right)^{10}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10 \left(3x - 1\right)^9 \times 3$	M1 A1	2	M1 for $a(3x-1)^9$ where $a = \text{constant}$
	dx			
	$= 30 (3x-1)^{2}$			
(b)	$= 30 (3x-1)^9$ $\int x(2x+1)^8 dx$			
(U)	$\int x(2x+1) dx$			
	u = 2x + 1	D.I.		
	$\mathrm{d}u = 2 \mathrm{d}x$	B1		OE
	f f(u-1) g(du)			
	$\int = \int \left(\frac{u-1}{2}\right) u^8 \left(\frac{\mathrm{d}u}{2}\right)$	M1		all in terms of u . Condone omission of du
	$=\frac{1}{4}\int u^9 - u^8 \mathrm{d}u$			
	4 *			10 9
	$=\frac{1}{4}\left[\frac{u^{10}}{10}-\frac{u^{2}}{10}\right]$	B1		$p\frac{u^{10}}{10} + q\frac{u^9}{9}$
	$= \frac{1}{4} \left[\frac{u^{10}}{10} - \frac{u^9}{9} \right]$ $= \frac{(2x+1)^{10}}{40} - \frac{(2x+1)^9}{36} (+c)$			10 7
	$=\frac{(2x+1)}{(2x+1)} - \frac{(2x+1)}{(2x+1)} (+c)$	A1	4	OE; CAO
	40 36 '		-	SC: correct answer, no working/parts
				in x (B1)
	Total		6	

Q	Solution	Marks	Total	Comments
3(a)	$\sec x = 5$			
	$\cos x = 0.2$	M1		
	<i>x</i> = 1.37, 4.91 AWRT	A1A1	3	
(b)	$\tan^2 x = 3\sec x + 9$			
	$\sec^2 x - 1 = 3 \sec x + 9$	M1		for using $\sec^2 x = 1 + \tan^2 x$ OE
	$\sec^2 x - 3 \sec x - 10 = 0$	A1	2	AG
(c)	$(\sec x - 5)(\sec x + 2) = 0$	M1		or use of formula (attempt)
	$\sec x = 5, -2$	A1		
	$\cos x = 0.2, -0.5$			
	x = 1.37, 4.91	B1F		any 2 correct or ft their 2 answers in (a)
	2.09, 4.19	A1	4	all 4 correct, no extras
	Total		9	
4(a)(i)	4 y= 2x-4	B1	1	y = x
(ii)	y - x	M1		2 branches mod graph $x > 0$ for $y = 0$
		A1	2	for 2, 4
(b)(i)	x = 2x - 4, x = 4	B1		
	-x = 2x - 4	M1		
	$x = \frac{4}{3}$	A1	3	OE one value only
	Alternative:			
	$x^2 = (2x - 4)^2$	M1		
	Alternative: $x^{2} = (2x - 4)^{2}$ $x = 4, \frac{4}{3}$ $\frac{4}{3} < x < 4$	A1A1		
	4			4
(ii)	$\left \frac{\tau}{3} < x < 4\right $	M1		$\frac{4}{3}$, 4 (ft) identified as extremes
		A1	2	CAO
	Total		8	

4

PC3 (cont)		r		
Q	Solution	Marks	Total	Comments
5(a)	$y = e^{2x} - 10e^x + 12x$			
(i)	$\frac{dy}{dx} = 2e^{2x} - 10e^{x} + 12$	B1		$2e^{2x}$
(1)	$\frac{1}{dx}$ = 2c = 10c + 12	B1	2	remaining terms correct, no extras
		DI	2	
(ii)	$d^2 y$ $d^2 x$ 10 x			
(11)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\mathrm{e}^{2x} - 10\mathrm{e}^x$	B1F	1	ft 1 slip
(b)(i)	$2e^{2x} - 10e^x + 12 = 0$			
	$e^{2x} - 5e^x + 6 = 0$	B1	1	AG (be convinced)
(ii)	$z^2 - 5z + 6 = 0$	M1		use of $z = e^x$ oe
	z = 2, 3			
	$z=2, e^x=2$	M1		finding e^x = their 2,3
	$x = \ln 2$			
	$z = 3, e^{x} = 3$ $x = \ln 3$	A 1	3	all correct AG
	x = 1115	A1	3	SC: verification
				ln 2 (B1)
				$\ln 3$ (B1)
(iii)	$x = \ln 2$:			
	$y = e^{2\ln 2} - 10e^{\ln 2} + 12\ln 2$	M1		either substitution of their $x = \ln 2$
	or $2^2 - 10 \times 2 + 12 \ln 2$			$(e^x = 2)$ or their $x = \ln 3$ $(e^x = 3)$
	$= 4 - 20 + 12 \ln 2$			
	$= -16 + 12 \ln 2$	A1		
	$x = \ln 3$:			
	$y = e^{2\ln 3} - 10e^{\ln 3} + 12\ln 3$			
	$= 9 - 30 + 12 \ln 3$			
	$= -21 + 12\ln 3$	Al	3	
(iv)	$x = \ln 2$:			
	$\frac{d^2 y}{dx^2} = 4e^{2\ln 2} - 10e^{\ln 2}$	M1		use of in either of their $a^{x} - 2$ into
	dx^2 to not dx^2	IVII		use of; in either of their $e^x = 2,3$ into
				their $\frac{d^2 y}{dx^2}$
	= 16 - 20 = -4			dx ²
	\therefore maximum	A1		CSO
	$x = \ln 3$:			
	$\frac{d^2 y}{dr^2} = 4e^{2\ln 3} - 10e^{\ln 3}$			
	= 36 - 30 = 6			
	∴ minimum	A1	3	CSO
		Total	13	

MPC3 (cont				
Q	Solution	Marks	Total	Comments
6(a)	$\therefore \int \ln x = 1 (\ln 1.5 + \ln 2.5 + \ln 3.5 + \ln 4.5)$	M1		use of 1.5, 2.5,; 3 or 4 correct x values
	1.00	A1	2	AWFW 4 to 4.2
	= 4.08	A1	3	CAO
(b)(i)	$y = x \ln x$			
	-	M1		use of product rule (only differentiating, 2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \times \frac{1}{x} + \ln x$			terms with + sign)
	$= \ln x + 1$	A1	2	
(ii)	$\int (\ln x + 1) \mathrm{d}x = x \ln x$	M1		OE; attempt at parts with $u = \ln x$
, í	$\int \ln x \mathrm{d} x = x \ln x - x (+c)$	A1	2	
	$\int \prod x dx = x \prod x - x (+c)$	AI	2	
	5			
(iii)	$\int \ln x dx = \left[x \ln x - x \right]_{1}^{5}$			
	$\int_{1}^{5} \ln x dx = [x \ln x - x]_{1}^{5}$ $= (5 \ln 5 - 5) - (1 \ln 1 - 1)$	N 41		
	$=(5\ln 5-5)-(1\ln 1-1)$	M1		correct substitution of limits into their (ii) provided $\ln x$ is involved
	$5\ln 5 - 4$	A1	2	ISW
	Total		9	
7(a)	sin x			
7(a)	$z = \frac{\sin x}{\cos x}$			
		M1		use of quotient rule $\left(\frac{\pm \cos^2 x \pm \sin^2 x}{\cos^2 x}\right)$
	$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\cos x \cos x - \sin x \left(-\sin x\right)}{\cos^2 x}$	A1		use of quotient rule $\left(\frac{\cos^2 x}{\cos^2 x}\right)$
	1			
	$=\frac{1}{\cos^2 x}$			
	$= \sec^2 x$	A1	3	AG (be convinced)
(b)				
		M1		correct shape including asymptotic
		1011		behaviour and symmetrical about $x = 0$
				and $y > 0$
	1	A1	2	use of 1
	$\left(-\frac{\pi}{2}\right)$ 0 $\left(\frac{\pi}{2}\right)$			
	([-1) (1)			
(c)	$V = (k) \int \sec^2 x \mathrm{d}x$	M1		
	$=(k)[\tan x]_0^1$	A1		
	= 4.89	Al	3	САО
	Total		8	
	10141	I	U	

MPC3 (cont)

<u>APC3 (cont</u> Q	Solution	Marks	Total	Comments
8(a)	$f(x) = 2e^{3x} - 1$			
	Range: $f(x) > -1$ (or $y > -1$ or $f > -1$)	M1		for –1 only
		A1	2	exactly correct
(b)	$y = 2e^{3x} - 1$			
	$y = 2e^{-1}$ $x = 2e^{3y} - 1$ $2e^{3y} = x + 1$ $e^{3y} = \frac{x + 1}{2}$	M1		$x \leftrightarrow y$
	$2e^{3y} = x + 1$			
	$e^{3y} = \frac{x+1}{2}$	M1		attempt to isolate
	2			
	$y = \frac{1}{3} \ln \left(\frac{x+1}{2} \right)$	A1	3	all correct with no error AG (be
	3 (2)		-	convinced)
				1
(c)	1 (2) 1	M1		for differentiation of ln; $\frac{k}{\text{their}(x \pm 1)}$
	$f'^{-1}(x) = \frac{1}{3} \left(\frac{2}{x+1} \right) \times \frac{1}{2} OE$			
	S(x+1)/2	A1		for $\frac{1}{2}$
		A1		all correct
	x = 0			
	$f'^{-1}(x) = \frac{1}{3}$	A1	4	CSO
	3		-	
	Alternative			
	$f^{-1}(x) = \frac{1}{3}\ln(x+1) - \frac{1}{3}\ln 2$	M1A1		
	$f'^{-1}(x) = \frac{1}{1}$			
	$f'^{-1}(x) = \frac{1}{3(x+1)}$ $f'^{-1}(0) = \frac{1}{3}$	A1		
	$f'^{-1}(0) = \frac{1}{2}$	A 1		670
	5	A1	6	CSO
	Total		9	

MPC3	(cont)
------	--------

Q	Solution	Marks	Total	Comments
9(a)	$x = \frac{1}{2}$ $y = \frac{\pi}{2}$ (or 1.57, sin ⁻¹ 1)	B1	1	ignore 90°
(b)(i)	$y = \sin^{-1} 2x$ sin y = 2x and			
	$\frac{1}{2}\sin y = x$	B1	1	AG (be convinced)
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2}\cos y$	B1	1	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\cos y}$	M1A1		M1 for $\frac{k}{\cos y}$
	$\sin y = 2x \text{ and } \sin^2 + \cos^2 = 1$ $\cos y = \sqrt{1 - 4x^2}$	M1		use of to get $\cos y$ or $\cos^2 y$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{1-4x^2}}$	A1	4	AG; condone omission of proof of sign
	Total		7	
	TOTAL		75	