ADVANCED SUBSIDIARY GCE UNIT

Concepts for Advanced Mathematics (C2)

TUESDAY 16 JANUARY 2007

Morning
Time: 1 hour 30 minutes

Additional materials:

Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72.
- There is an insert for use in Question 13.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
This document consists of 6 printed pages, 2 blank pages and an insert.
HN/5 © OCR $2007[\mathrm{~K} / 100 / 2648]$
[Turn over

Section A (36 marks)

1 Differentiate $6 x^{\frac{5}{2}}+4$.

2 A geometric progression has 6 as its first term. Its sum to infinity is 5 . Calculate its common ratio.

3 Given that $\cos \theta=\frac{1}{3}$ and θ is acute, find the exact value of $\tan \theta$.

4 Sequences A, B and C are shown below. They each continue in the pattern established by the given terms.

$$
\begin{array}{lllllll}
\text { A: } & 1, & 2, & 4, & 8, & 16, & 32, \\
\text { B: } & 20, & -10, & 5, & -2.5, & 1.25, & -0.625,
\end{array} \ldots
$$

(i) Which of these sequences is periodic?
(ii) Which of these sequences is convergent?
(iii) Find, in terms of n, the nth term of sequence A.

5 A is the point $(2,1)$ on the curve $y=\frac{4}{x^{2}}$.
B is the point on the same curve with x-coordinate 2.1.
(i) Calculate the gradient of the chord AB of the curve. Give your answer correct to 2 decimal places.
(ii) Give the x-coordinate of a point C on the curve for which the gradient of chord AC is a better approximation to the gradient of the curve at A .
(iii) Use calculus to find the gradient of the curve at A.

6 Sketch the curve $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
Solve the equation $\sin x=-0.68$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

7 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-6 x$. Find the set of values of x for which y is an increasing function of x.

8 The 7th term of an arithmetic progression is 6 . The sum of the first 10 terms of the progression is 30.

Find the 5th term of the progression.

9 A curve has gradient given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}+8 x$. The curve passes through the point $(1,5)$. Find the equation of the curve.

10 (i) Express $\log _{a} x^{4}+\log _{a}\left(\frac{1}{x}\right)$ as a multiple of $\log _{a} x$.
(ii) Given that $\log _{10} b+\log _{10} c=3$, find b in terms of c.
[Section B starts on the next page.]

Section B (36 marks)

11 Fig. 11.1 shows a village green which is bordered by 3 straight roads AB, BC and CA . The road AC runs due North and the measurements shown are in metres.

Not to
scale

Fig. 11.1
(i) Calculate the bearing of B from C, giving your answer to the nearest 0.1°.
(ii) Calculate the area of the village green.

The road $A B$ is replaced by a new road, as shown in Fig. 11.2. The village green is extended up to the new road.

Not to
scale

Fig. 11.2
The new road is an arc of a circle with centre O and radius 130 m .
(iii) (A) Show that angle AOB is 1.63 radians, correct to 3 significant figures.
(B) Show that the area of land added to the village green is $5300 \mathrm{~m}^{2}$ correct to 2 significant figures.

12 Fig. 12 is a sketch of the curve $y=2 x^{2}-11 x+12$.

Not to
scale

Fig. 12
(i) Show that the curve intersects the x-axis at $(4,0)$ and find the coordinates of the other point of intersection of the curve and the x-axis.
(ii) Find the equation of the normal to the curve at the point $(4,0)$.

Show also that the area of the triangle bounded by this normal and the axes is 1.6 units 2. [6]
(iii) Find the area of the region bounded by the curve and the x-axis.

13 Answer part (ii) of this question on the insert provided.

The table gives a firm's monthly profits for the first few months after the start of its business, rounded to the nearest $£ 100$.

Number of months after start-up (x)	1	2	3	4	5	6
Profit for this month $(£ y)$	500	800	1200	1900	3000	4800

The firm's profits, $£ y$, for the x th month after start-up are modelled by

$$
y=k \times 10^{a x}
$$

where a and k are constants.
(i) Show that, according to this model, a graph of $\log _{10} y$ against x gives a straight line of gradient a and intercept $\log _{10} k$.
(ii) On the insert, complete the table and plot $\log _{10} y$ against x, drawing by eye a line of best fit.
(iii) Use your graph to find an equation for y in terms of x for this model.
(iv) For which month after start-up does this model predict profits of about $£ 75000$?
(v) State one way in which this model is unrealistic.

ADVANCED SUBSIDIARY GCE UNIT

Concepts for Advanced Mathematics (C2)

INSERT

TUESDAY 16 JANUARY 2007

Candidate

Name
Centre
Number \square Candidate Number \square

INSTRUCTIONS TO CANDIDATES

- This insert should be used in Question 13(ii).
- Write your name, centre number and candidate number in the spaces provided above and attach the page to your answer booklet.

13 (ii)

Number of months after start-up (x)	1	2	3	4	5	6
Profit for this month (£y)	500	800	1200	1900	3000	4800
$\log _{10} y$	2.70					

