Mark Scheme 4766 June 2005

Statistics 1 (4766)

Qn	Answer	Mk	Comment
1 (i)	Mean = $657/20 = 32.85$	B1 cao	
(ii)	Variance = $\frac{1}{19}$ (22839 - $\frac{657^2}{20}$) = 66.13	M1 A1 cao	
(11)	Standard deviation = 8.13		
	32.85 + 2(8.13) = 49.11	M1 ft	Calculation of 49.11
	none of the 3 values exceed this so no outliers	A1 ft	
2 (i)	Length of journey		
	120 100 80 60 40 20 0 2 4 6 8 10 Length of journey	G1 G1 G1	For calculating 38,68,89,103,112,120 Plotting end points Heights inc (0,0)
(ii)	Median = 1.7 miles	B1	
	Lower quartile = 0.8 miles	M1	
	Upper quartile = 3 miles	M1	
	Interquartile range = 2.2 miles	A1 ft	
(iii)	The graph exhibits positive skewness	E1	

Statistics 1 (4766) June 2005

Final Mark Scheme

		1	
(ii)	$P(X = 4) = \frac{1}{40} (4)(5) = \frac{1}{2} \text{ (Answer given)}$ $E(X) = (2+12+36+80) \frac{1}{40}$	B1 M1 A1 cao	Calculation must be seen Sum of rp
	So E(X) = 3.25	M1	Sum of r ² p
	Var $(X) = (2+24+108+320)\frac{1}{40} - 3.25^2$ = 11.35 - 10.5625	M1 dep	-3.25 ²
	= 0.7875	A1 cao	
(iii)	Expected number of weeks = $\frac{6}{40}$ x45 = 6.75 weeks	M1 A1	Use of np
4 (i)	Number of choices $=$ $\binom{6}{3}$ $=$ 20	M1 A1	For $\binom{6}{3}$
(ii)	Number of ways = $\binom{6}{3} \times \binom{7}{4} \times \binom{8}{5}$	M1 M1	Correct 3 terms Multiplied
	$= 20 \times 35 \times 56$ = 39200	A1 cao	
(iii)	Number of ways of choosing 12 questions $= {21 \choose 12} = 293930$	M1	For $\begin{pmatrix} 21 \\ 12 \end{pmatrix}$
	Probability of choosing correct number from each section = 39200/293930 = 0.133	M1 ft A1 cao	

5									
(i)		1	2	3	4	5	6		
	1	1	2	3	4	5	6		
	2	2	2	6	4	10	6		
	3	3	6	3	12	15	6		
	4	4	4	12	4	20	12		
	5	5	10	15	20	5	30	B1	All correct
	6	6	6	6	12	30	6		
(ii)	(A) P(1	LCM:	> 6) =	1/3				B1	
	(B) $P(LCM = 5n) = 11/36$							B1	
	(C) $P(LCM > 6 \cap LCM = 5n) = 2/9$					M1 A1 cao	Use of diagram		
(iii)	$\frac{1}{3} \times \frac{11}{36}$	$\frac{1}{6} \neq \frac{2}{9}$	-					M1	Use of definition
	Hence	events	s are no	ot inde	penden	nt		E1	

(A)	$P(First team) = 0.9^3 = 0.729$	A1	
(B)	P(Second team) = $0.9 \times 0.9 \times 0.1 + 0.9 \times 0.1 \times 0.5 + 0.1 \times 0.9 \times 0.5$	M1 M1	1 correct triple 3 correct triples added
	= 0.081 + 0.045 + 0.045 = 0.171	A1	added
(iii)	P(asked to leave) = $1 - 0.729 - 0.171$		
	= 0.1	B1	
(iv)	P(Leave after two games given leaves)		
	$= \frac{0.1 \times 0.5}{0.1} = \frac{1}{2}$	M1 ft A1 cao	Denominator
(v)	P(at least one is asked to leave)	M1 ft	Calc'n of 0.9 1 – () ³
	$= 1 - 0.9^3 = 0.271$	M1 A1 cao	
(vi)	P(Pass a total of 7 games)		
	=P(First, Second, Second) + P(First, First, Leave after three games)	M1 M1 ft	Attempts both 0.729(0.171) ²
	$= 3 \times 0.729 \times 0.171^2 + 3 \times 0.729^2 \times 0.05$	M1 ft	$0.05(0.729)^2$
	= 0.064 + 0.080 = 0.144	M1 A1 cao	multiply by 3

		1	1
(iii)	$\mathbf{p}(\mathbf{y} + 2) = 1 - \mathbf{p}(\mathbf{y} \neq 2)$	M1	
	$P(X > 3) = 1 - P(X \le 3)$	A1	
	= 1 - 0.7685 = 0.232	AI	
	1 01/005 01252		
(iv)		B1	Definition of p
(A)	Let p = probability of a six on any throw	B1	Both hypotheses
	$H_0: p = \frac{1}{6}$ $H_1: p < \frac{1}{6}$	D1	Both hypotheses
	$X \sim B\left(15, \frac{1}{6}\right)$		
		M1	0.065
	P(X=0) = 0.065	M1 dep	Comparison
	$0.065 < 0.1$ and so reject H_0	E1 dep	
	Conclude that there is sufficient evidence at the 10% level that the dice are biased against	Li dep	
	sixes.		
		B1	Both hypotheses
(<i>B</i>)	Let $p = probability of a six on any throw$		
(<i>b</i>)	$H_0: p = \frac{1}{6}$ $H_1: p > \frac{1}{6}$		
	$X \sim B\left(15, \frac{1}{6}\right)$	M1	0.09
		M1 dep	Comparison
	$P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.910 = 0.09$	E1 dep	
	$0.09 < 0.1$ and so reject H_0	_F	
	Conclude that there is sufficient evidence at the 10% level that the dice are biased in		
	favour of sixes.	E1 E1	Contradictory By chance
		101	by chance
(v)	Conclusions contradictory.		
	Even if null hypothesis is true, it will be rejected 10% of the time purely by chance.		
	Or other sensible comments.		