Mark Scheme (Results)
January 2022

Pearson Edexcel International GCSE
In Mathematics B (4MB1)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P68816A
Publications Code 4MB1_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question: eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes
4	$\cos \angle \mathrm{ABC}=\frac{8}{15}$		2	M1 Correct expression for trigonometric ratio of $\angle \mathrm{ABC}$ Allow use of Pythagoras with tan or sine. Allow use of sine rule or cosine rule. Eg. $[\mathrm{AC}=] \sqrt{15^{2}-8^{2}}[=12.7] \text { and } \frac{\sin \angle \mathrm{ABC}}{" 12.7 "}=\frac{\sin 90}{15}$
		57.8		A1 awrt 57.8
				Total 2 marks
5	$\left(\begin{array}{cc}20 & -16 \\ 8 & -8\end{array}\right)[-]\left(\begin{array}{cc}9 & -6 \\ -6 & 15\end{array}\right)$		2	M1 Multiplying by scalar. Allow 1 numerical or sign error. There is no need to show an intention to subtract.
		$\left(\begin{array}{ll}11 & -10 \\ 14 & -23\end{array}\right)$		A1 cao
				Total 2 marks
6 (a)		-2, 1	1	B1 cao
(b)	$3 \mathrm{~m}-5=103$ oe		2	M1 Forms an equation or a method to find m eg. $[\mathrm{m}=] \frac{(103-(-2))}{3}+1$ allow use of alternative letters
		36		A1 cao

Question	Working	Answer	Mark	Notes
12	$y=x+1+x^{-1}$		3	M1 Rewriting as a 3 term expression in a form that can be differentiated. At least 2 terms correct. Allow product or quotient rule with a maximum of 1 error: $\begin{aligned} & {\left[\frac{d y}{d x}=\right](2 x+1) x^{-1}-\left(x^{2}+x+1\right) x^{-2} \text { or }} \\ & {\left[\frac{d y}{d x}=\right] \frac{(2 x+1) x-\left(x^{2}+x+1\right)[1]}{x^{2}}} \end{aligned}$
	$\left[\frac{\mathrm{d}(\mathrm{x})}{\mathrm{dx}}=\right] 1 \text { or }\left[\frac{\mathrm{d}\left(\mathrm{x}^{-1}\right)}{\mathrm{dx}}=\right]-\mathrm{x}^{-2}$			M1 indep For one term in x correctly differentiated (ft their simplified 3 term expression) or one correct derivative in a product or quotient rule $(2 x+1), 1$ or $-x^{-2}$, must have the correct structure for the rule
		$1-\mathrm{x}^{-2}$		A1 oe Allow an unsimplified answer, do not isw $\mathbf{S C}$ if no other marks awarded if top and bottom are differentiated independently giving an answer of $2 x+1$ award B1
			Total 3 marks	
13	$\sqrt{144 \times 3}-\sqrt{49 \times 3}$		3	
	$5 \sqrt{3}$			A1 Must gain the method mark to award this allow for $\sqrt{75}$ gained without $5 \sqrt{3}$ stated
		$\sqrt{75}$		A1 dep on M mark gained allow $\mathrm{n}=75$
				Total 3 marks

Question	Working	Answer	Mark		Notes
16(a)	21250×1.04 oe	22100 shown	1		B1 increasing 21250 by 4%.
(b)	$22100-4000[=18100]$		3		Accept $22100-8000[=14100]$ for this mark only. M1 Need to see subtraction of 4000 before an attempt at adding interest
	$(22100-4000) \times 1.04-4000$				M1 dep full method to find final amount
		14824			A1 Do not isw
(Total 4 marks					
17			4		
	A line parallel to AB drawn 2 cm from AB				M1
	Circle radius 3 cm centre the fountain				M1 Allow gaps in circle as long they are below any line drawn parallel to AB
	AC drawn and arc on AB and AC equal distance from A plus two intersecting arcs drawn from these plus line drawn				M1 Allow if AC not complete as long as sufficient is drawn to allow the required construction use professional judgement on the accuracy of AC
		Correct region identified			A1 dep All previous method marks must be awarded. Condone if the region is not labelled R as long as it is clearly shaded.

Question	Working	Answer	Mark	Notes	
18	$[29.4=] \frac{1}{2}(9+5) \times \mathrm{BC}$ oe		4	for correct formula for area of the trapezium. Allow M1 for a correct equation in BC . Allow h or x for BC . Do not allow AD.	
	$[\mathrm{BC}=] \frac{29.4 \times 2}{14}[=4.2]$			M1 dep a correct expression for BC	
	$\mathrm{AD}^{2}=44.2^{\prime 2}+(9-5)^{2} \mathrm{oe}$			M1 indep A correct formula involving AD ft their BC	
		5.8		A1 cao	
			Total 4 marks		
19	$180(\mathrm{n}-2)=8280$ oe		4	M1 Forming a correct equation.	
	$\mathrm{n}=\frac{8280}{180}+2[=48]$			M1 dep Rearranging correctly to find n (number of sides).	
	$\frac{360}{48 "}$ or $180-\frac{8280}{448 "}$			M1 indep Correct method to find exterior angle from their n . For the award of this mark n must be a positive integer.	
		7.5		A1 cao	
			T Total 4 marks		
20	$\mathrm{p}=\frac{\mathrm{k}}{\sqrt{\mathrm{q}}}$		4	M1 For using inversely proportional e.g. $\mathrm{p}=\frac{\mathrm{k}}{-}$ or $\mathrm{k}=\mathrm{p} \times \ldots$	M2 correct equation in qeg $28 \sqrt{q}=420 \times \sqrt{9}$
	$\mathrm{k}=420 \times \sqrt{9}[=1260]$			M1 dep Substitute numbers into their equation to find a correct expression for k .	
	$\mathrm{q}=\left(\frac{1260 "}{28}\right)^{2}$			M1 dep Rearranging correctly to get a value for q.	
		2025		A1 cao	
					Total 4 marks

Question	Working	Answer	Mark	Notes	
21	$\begin{aligned} & 12.5 \leqslant \text { Area }<13.5 \\ & 5.15 \leqslant a<5.25 \\ & 8.35 \leqslant b<8.45 \end{aligned}$		4		One bound from each line seen e.g. $12.5,5.15$ and 8.45 seen
	$\begin{aligned} & {[\sin \mathrm{C}=] \frac{2 \times \text { Area }}{\mathrm{a} \times \mathrm{b}} \text { or }} \\ & \text { Area }=\frac{1}{2} \times \mathrm{a} \times \mathrm{b} \times \sin \mathrm{C} \end{aligned}$			M1	Expression to find $\sin \mathrm{C}$ with values substituted in. If values of Area, a and b not clearly defined in response allow $10 \leq$ Area $\leq 20,5 \leq \mathrm{a} \leq 6$ and $8 \leq \mathrm{b} \leq 9$ $\sin \mathrm{C}=$ is not required but penalise incorrect formula used.
	$\begin{gathered} =\frac{2 \times 12.5}{5.25 \times 8.45} \text { or } \\ 12.5=\frac{1}{2} \times 5.25 \times 8.45 \times \sin \mathrm{C} \end{gathered}$			M1	Dep on previous M mark. Must show 1 LB for Area and 2 UB for a and b if these are not clearly stated allow use of $12.5 \leqslant \text { Area }<13,5.2<a \leqslant 5.258 .4<b \leqslant 8.45$
		34.3		A1	Awrt 34.3 must see all correct values (12.5, 5.25 and 8.45) used

Total 4 marks

Question	Working	Answer	Mark	Notes
22	$\frac{8-7 x}{(6 x-5)(x+2)}$		4	M1 denominator factorised, must expand to give at least 2 term correct
	$\begin{aligned} & \frac{3(x+2)-2(5 x-1)}{(x+2)(5 x-1)} \text { or } \\ & \frac{(x+2)(5 x-1)}{3(x+2)-2(5 x-1)} \text { oe } \end{aligned}$			M1 indep 2 fractions subtracted, allow 1 sign error eg. $\frac{3 x+6-10 x-2}{5 x^{2}+10 x-x-2}$
	$\left[\frac{8-7 x}{(6 x-5)(x+2)}\right] \times \frac{(x+2)(5 x-1)}{8-7 x}$			M1 indep this is not dependent on the previous marks but the candidate must achieve a single fraction from their subtraction to be awarded this mark for inverting their divisor.
		$\frac{5 x-1}{6 x-5}$		A1 dep on all M marks awarded correct answer gained with no incorrect working seen.

Question	Working	Answer	Mark	Notes	
23 (a)			3	B1 $8 / 20$ oe B1 $11 / 19$ and $8 / 19$ B1 $12 / 19$ and $7 / 19$	
(b)	$\frac{12}{20} \times " \frac{8}{19} " \text { or } \frac{8}{20} \times " \frac{12}{19} " \text { or } \frac{8}{20} \times " \frac{7}{19} " \text { oe }$			M1 ft their (a) (Do not ft values greater than 1) One correct probability.	$\begin{aligned} & \text { M2 for } \\ & 1-\frac{12}{20} \times " \frac{11}{19} \end{aligned}$
	$\frac{12}{20} \times " \frac{8}{19} "+\frac{8}{20} \times 1 \frac{12}{19} "+\frac{8}{20} \times{ }^{\frac{7}{19}} " \text { oe }$			M1 ft their (a) (Do not ft values greater than 1) Recognising the 3 combinations and adding them oe eg $\frac{12}{20} \times " \frac{8}{19} "+" \frac{8}{20}$ "	
		$\frac{62}{95}$		A1 oe allow awrt 0.653	
Total 6 marks					

Question	Working	Answer	Mark	Notes
24	$[\mathrm{M}=] 10 \mathrm{p}+\mathrm{q}$ or $[\mathrm{N}=] 10 \mathrm{q}+\mathrm{p}$ stated or used		5	M1 Allow M and N interchanged as long as one is $10 \mathrm{p}+\mathrm{q}$ and one is $10 \mathrm{q}+\mathrm{p}$ or $\mathrm{M}+\mathrm{N}=10 \mathrm{p}+10 \mathrm{q}+\mathrm{p}+\mathrm{q}$ oe
	$" 10 q+p "-(" 10 p+q ")=9 \text { or } q-p=1$ oe			M1 dep or $\mathrm{M}+\mathrm{N}=11 \times 13$
	$\mathrm{p}=6$ or $\mathrm{q}=7$			A1 $\mathrm{M}+\mathrm{N}=143$
	e.g. $q-6=1$			M1 dep on first two M marks. Method to find second unknown or Meg. $2 \mathrm{M}=143+9$ If p or q is not an integer between 0 and 9 inclusive do not award this mark if used to find the other digit. Can be implied by a correct answer if all other marks awarded
		67		A1 dep on all marks gained
				Total 5 marks

Question	Working	Answer	Mark	Notes
25	$\begin{aligned} & 8\left(x^{2}-7 x\right)+17[=0] \text { or } \\ & 8\left(x^{2}-7 x+\frac{17}{8}\right)[=0] \end{aligned}$		6	M1 Factorising out 8 allow one numeric or sign error. Allow $\mathrm{p}=8$
	$\begin{aligned} & 8\left(\left(x-\frac{7}{2}\right)^{2}-\frac{49}{4}\right)+17[=0] \text { or } \\ & 8\left(\left(x-\frac{7}{2}\right)^{2}-\frac{49}{4}+\frac{17}{8}\right)[=0] \end{aligned}$			dep Correct method for completing the square . allow a maximum of one numeric or sign error in total. Coefficient of x must be halved. Allow $\mathrm{p}=8$ and $\mathrm{q}=-3.5 \mathrm{oe}$
	$8\left(x-\frac{7}{2}\right)^{2}-81[=0]$			dep Obtain expression in the required form, allow a maximum of one numeric or sign error in total. M1 Allow $p=8, q=-3.5$ and $r=81$ oe For candidates using the quadratic formula use the alternative scheme for subsequent marks.
	$\mathrm{x}-\frac{7}{2}=[\pm] \sqrt{\frac{81}{8}}$			indep Must follow from an equation in the form $a(b x+c)^{2}+d=0$ for rearranging and squarerooting May be implied by a correct answer. Condone just one root given
	$\mathrm{x}=\frac{7}{2} \pm \frac{9 \sqrt{8}}{8}$			dep on previous M mark. Must have 2 roots Rationalising the denominator require an expression for x in the form M1 $a \pm b \sqrt{2}$ or $a \pm b \sqrt{8}$ where a and b are rational or $\frac{\mathrm{a} \pm \mathrm{b} \sqrt{2}}{\mathrm{c}}$ or $\frac{\mathrm{a} \pm \mathrm{b} \sqrt{8}}{\mathrm{c}}$ where a, b and c are integers May be implied by a correct answer.
		$\mathrm{x}=\frac{14 \pm 9 \sqrt{2}}{4}$		A1 oe dep on first three M marks awarded. Allow answer given as decimal if correct answer seen.

Question	Working	Answer	Mark	Notes
26	$[\mathrm{AM}=] \sqrt{(8 \sqrt{3})^{2}-(4 \sqrt{3})^{2}}[=12]$			

Total 7 marks
Candidates may use different length or areas from those listed, any that are equivalent should gains marks as per the scheme. For reference:
Taking X as mid-point of $A B$ and Y as the mid-point of $A C$
$\mathrm{AM}=\mathrm{CX}=\mathrm{BY}=12, \mathrm{AO}=\mathrm{BO}=\mathrm{CO}=8, \mathrm{OM}=\mathrm{OX}=\mathrm{OY}=4$, A ea of $\mathrm{ABC}=48 \sqrt{3}=83.1$,

Question	Working	Answer	Mark	Notes
27	$[t=] \frac{168}{x}$		7	M1 Allow $[\mathrm{x}=] \frac{168}{\mathrm{t}}$
	$[\mathrm{t}=] \frac{168}{\mathrm{x}-2}-\frac{1}{5} \text { oe }$			M1 Allow $[x=] \frac{168}{t+0.2}+2$ do not accept $\frac{168}{x-2}-12$ or $\frac{168}{t+12}+2$ for this mark
	$\frac{168}{x-2}-\frac{1}{5}=\frac{168}{x} \mathrm{oe}$			Allow $\frac{168}{\mathrm{t}+0.2}+2=\frac{168}{\mathrm{t}}$ M1 For this mark we will accept use of 12 rather than 0.2 accept $\frac{168}{x-2}-12=\frac{168}{x}$ oe or $\frac{168}{t+12}+2=\frac{168}{t}$ oe
	$840 x-x(x-2)=840(x-2)$			dep on previous mark. Multiplying by a multiple of $x(x-2)$ or a multiple of $t(t+0.2)$ to form an equation with no algebraic fractions. M1 (If previous mark awarded for $\frac{168}{t+12}+2=\frac{168}{t}$ allow for multiplying by a multiple of $t(t+12)$)
	$\mathrm{x}^{2}-2 \mathrm{x}-1680=0$ oe			Allow $2 \mathrm{t}^{2}+0.4 \mathrm{t}-33.6=0 \mathrm{oe}$ A1 NB $12 \mathrm{x}^{2}-24 \mathrm{x}-336=0$ oe or $2 \mathrm{t}^{2}+24 \mathrm{t}-2016=0$ oe (from use of 12 rather than 0.2 do not gain this mark.)
	$(\mathrm{x}+40)(\mathrm{x}-42)=0$			indep Correct method for solving their 3 term quadratic. For M1 factorising 2 terms correct when multiplied out. If the formula or completing the square used, allow one sign/numerical error. Implied by answer of $x=-40$ or 42 or $t=4$ or -4.2
		42		A1 Answer of 42 only for this mark. Do not accept -40 or 42
				Total 7 marks

