

Please write clearly in	lock capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

A-level PHYSICS A

Unit 5 Nuclear and Thermal Physics Section A

Wednesday 21 June 2017

Morning

Materials

For this paper you must have:

- a calculator
- a pencil and a ruler
- a question paper/answer book for Section B (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this section is 40.
- You are expected to use a calculator, where appropriate.
- A Data and Formulae Booklet is provided as a loose insert in Section B.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Time allowed: The total time for both sections of this paper is 1 hour 45 minutes. You are advised to spend approximately 55 minutes on this section.

For Examiner's Use		
Examiner's Initials		
Question	Mark	
1		
2		
3		
4		
5		
TOTAL		

Section A

The maximum mark for this section is 40. You are advised to spend approximately 55 minutes on this section.

- **1** The artificial radioisotope phosphorus ${}^{32}_{15}P$ is formed when naturally occurring phosphorus ${}^{31}_{15}P$ is bombarded with hydrogen ${}^{2}_{1}H$ nuclei.
- **1 (a)** Which of the following equations correctly represent interactions that form ${}^{32}_{15}P$? Place a tick (\checkmark) in the right-hand column for **each** correct equation.

[1 mark]

Equation	Tick (✓) all correct equations
$^{31}_{15}P + ^{2}_{1}H \rightarrow ^{32}_{15}P + ^{1}_{0}n$	
${}^{31}_{15}P + {}^{2}_{1}H \rightarrow {}^{32}_{15}P + {}^{1}_{1}H$	
$^{31}_{15}P + ^2_1H \rightarrow ^{32}_{15}P + ^4_2\alpha$	
$^{31}_{15}P + ^{2}_{1}H \rightarrow ^{32}_{15}P + ^{1}_{1}p$	

1 (b) For the reaction to take place the centre of the hydrogen ${}_{1}^{2}$ H nucleus must come within a distance *d* from the centre of the phosphorus ${}_{15}^{31}$ P nucleus.

The nuclear reaction occurs when the hydrogen nucleus is given a minimum initial kinetic energy of $6.5\times10^{-13}~J.$

Calculate *d*.

[3 marks]

d = _____ m

4

Turn over for the next question

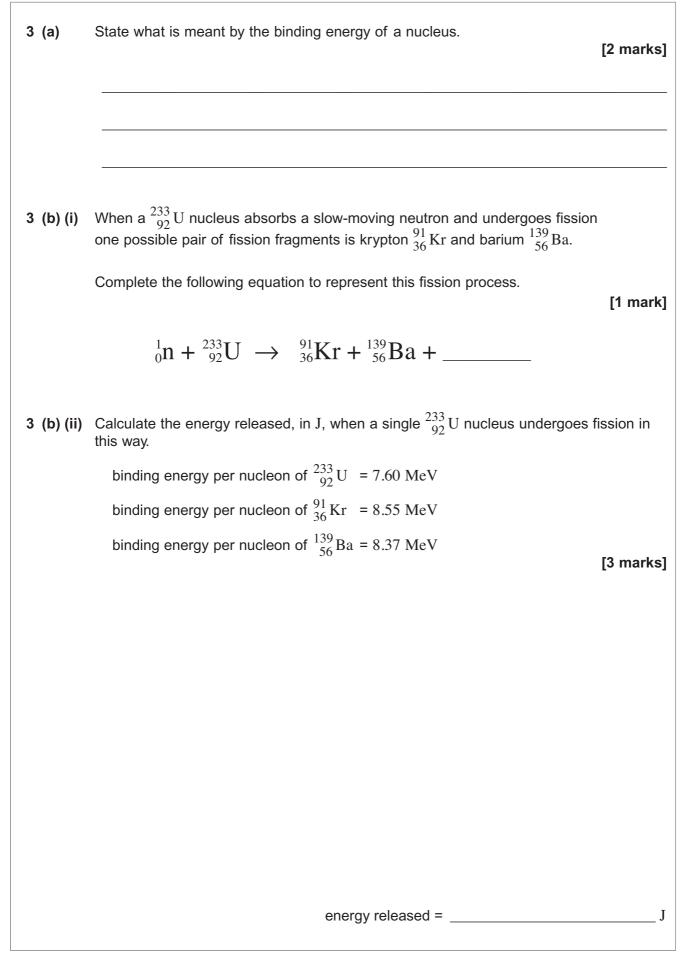
2 (d) A sample of 3.5×10^{23} atoms of carbon is removed from a piece of wood taken from the ancient axe handle. The rate of decay due to the ${}^{14}_{6}$ C atoms in this sample is 0.85 Bq.

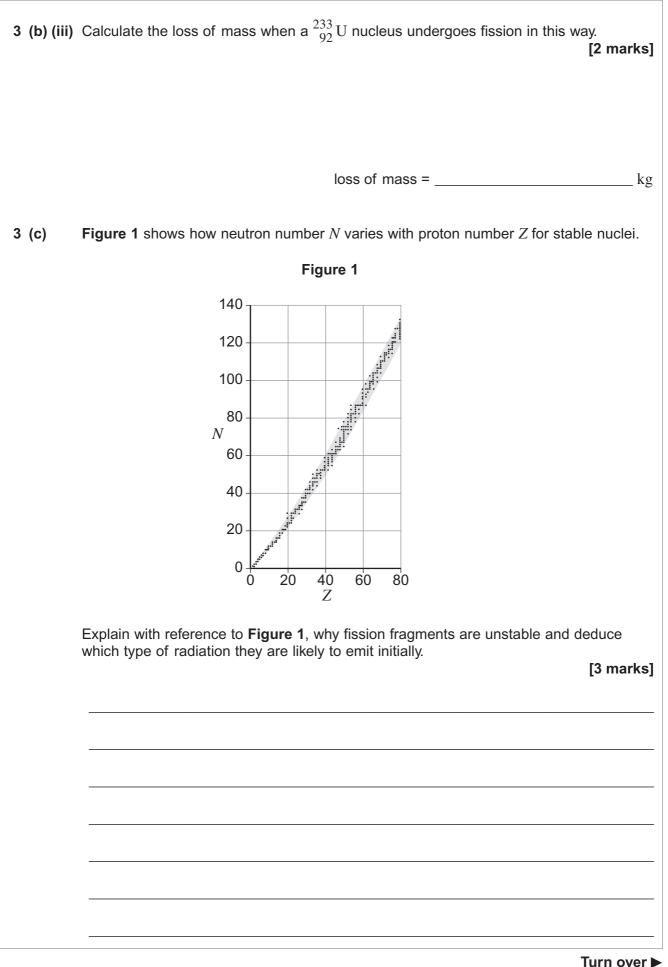
Calculate, in years, the age of the ancient axe handle.


[3 marks]

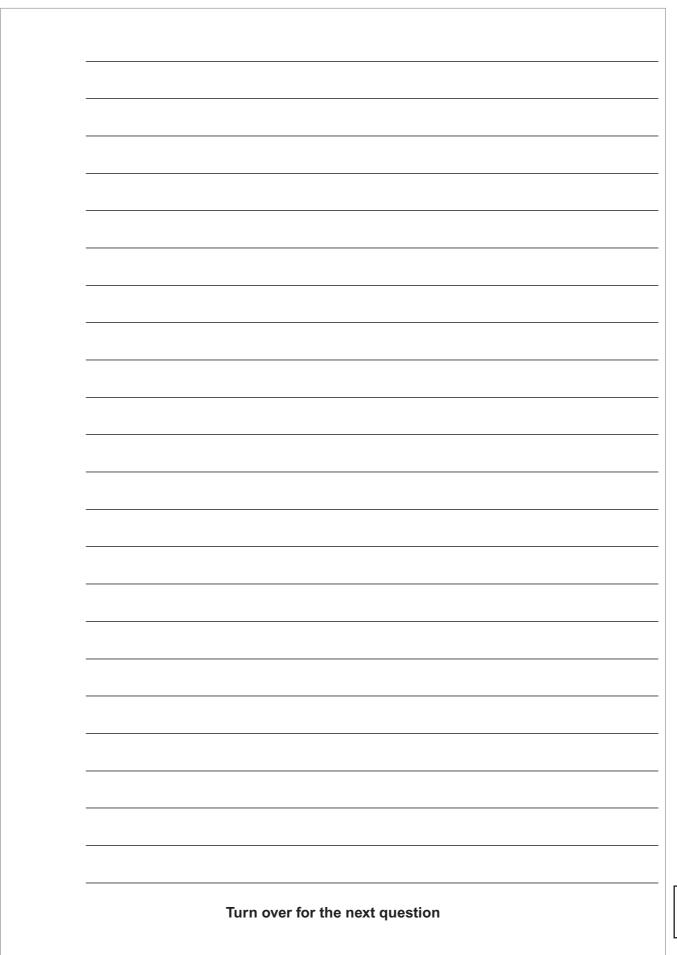
age = _____ years

Question 2 continues on the next page


2 (e)	State two reasons why it is difficult to obtain an accurate age of the ancient ax using this carbon dating method.	
	1	[2 marks]
	2	



Turn over ►



4	$1.50 \ { m mol}$ of an ideal gas is trapped in a container of constant volume. The gas is then heated so that the pressure of the gas changes.	
4 (a) (i)	Calculate the average kinetic energy of a molecule when this gas is at a temperature	
	of 25.0 °C. [2 marks]	
	average kinetic energy = J	
4 (a) (ii)	Calculate the total internal energy of the gas at a temperature of 25.0 °C. [1 mark]	
	total internal energy =J	
4 (b)	Explain how the gas exerts a pressure and why the pressure changes as the temperature increases.	
	Your answer should include:	
	 how the pressure is related to molecular motion the laws of physics that are used when relating pressure to molecular motion an explanation of what happens to the pressure as the temperature increases. 	
	The quality of your written communication will be assessed in your answer.	
	[6 marks]	

Turn over ►

5 Water of mass 0.250 kg at a temperature of 2.0 °C is poured into a glass beaker. The beaker has a mass of 0.200 kg and is initially at a temperature of 28.0 °C. specific heat capacity of water = $4190 \ J \ kg^{-1} \ K^{-1}$ specific heat capacity of glass = $840 \text{ J kg}^{-1} \text{ K}^{-1}$ Show that the final temperature $T_{\rm f}$ of the water is about 6 °C when it reaches thermal 5 (a) equilibrium with the beaker. Assume no heat is gained from or lost to the surroundings. [2 marks] The water and beaker are cooled from $T_{\rm f}$ to a temperature of 2.0 °C by adding ice at a 5 (b) temperature of 0 °C. Calculate the mass of ice added. Assume no heat is gained from or lost to the surroundings. specific latent heat of fusion of ice = 3.34×10^5 J kg⁻¹ [3 marks] mass = kg END OF QUESTIONS Copyright © 2017 AQA and its licensors. All rights reserved.

