

Centre Number
Candidate Number

$\square$

## Pearson Edexcel International GCSE

Time 1 hour 30 minutes

## $\begin{aligned} & \begin{array}{l}\text { Paper } \\ \text { reference }\end{array}\end{aligned} \quad 4 M / B 1 / 01$

## Mathematics B <br> PAPER 1



You must have: Ruler graduated in centimetres and millimetres, Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

## Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.


## Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.


## Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Pearson

## Answer all TWENTY SEVEN questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.
1 Find the Lowest Common Multiple (LCM) of 180 and 198 Show your working clearly.

2 Factorise fully $6 p^{3} q^{5} r-15 p q^{3}$

3 Find the value of $\frac{11-2 a^{2}}{b}$ when $a=-2$ and $b=-3$

4


Diagram NOT accurately drawn

The diagram shows the right-angled triangle in which

$$
A B=15 \mathrm{~cm} \quad B C=8 \mathrm{~cm} \quad \angle A C B=90^{\circ}
$$

Calculate the size, in degrees to 3 significant figures, of $\angle A B C$

$$
\mathbf{A}=\left(\begin{array}{ll}
5 & -4 \\
2 & -2
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{rr}
3 & -2 \\
-2 & 5
\end{array}\right)
$$

Calculate 4A-3B

6 The $n$th term of a sequence is given by $3 n-5$
(a) Write down the first two terms of this sequence.

The $m$ th term of this sequence is 103
(b) Find the value of $m$

$$
m=
$$

$\qquad$

7 A straight line $\mathbf{L}$ passes through the points with coordinates $(4,8)$ and $(0,-6)$
Find an equation of $\mathbf{L}$
Give your answer in the form $y=m x+c$

8


Diagram NOT accurately drawn
$O A B$ is a sector of a circle, centre $O$ and radius 6.5 cm
$\angle A O B=55^{\circ}$
Calculate the perimeter, in cm to 3 significant figures, of the sector $O A B$

9 Simplify $\frac{\left(25 x^{4} y^{2}\right)^{\frac{3}{2}}}{25 x^{3}}$

10


Diagram NOT accurately drawn

In the diagram, triangles $A B C$ and $A B D$ are such that

$$
A D=B C \quad \text { and } \quad \angle B A D=\angle A B C
$$

Prove that $A C=B D$


Diagram NOT accurately drawn

A solid is made by joining a hemisphere, of diameter 18 cm , to a right circular cone whose base has a diameter of 18 cm . The height of the cone is 24 cm .

The plane face of the cone coincides with the plane face of the hemisphere.
Calculate the volume, in $\mathrm{cm}^{3}$, of the solid.
Give your answer in terms of $\pi$

12 Given that $y=\frac{x^{2}+x+1}{x}$ where $x \neq 0$
find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

13 Without using a calculator and showing your working clearly, express

$$
\sqrt{432}-\sqrt{147}
$$

in the form $\sqrt{n}$ where $n$ is an integer.

14 A and B are two similar solids.
The volume of $\mathbf{A}$ is $500 \mathrm{~cm}^{3}$
The volume of $\mathbf{B}$ is $32 \mathrm{~cm}^{3}$
The total surface area of $\mathbf{A}$ is $250 \mathrm{~cm}^{2}$
Calculate the total surface area, in $\mathrm{cm}^{2}$, of $\mathbf{B}$.

15 The table gives information about the weights, in grams, of 40 adult mice.

| Weight $(\boldsymbol{w}$ grams) | Frequency |
| :---: | :---: |
| $17 \leqslant w<19$ | 8 |
| $19 \leqslant w<21$ | 3 |
| $21 \leqslant w<22$ | 15 |
| $22 \leqslant w<23$ | 8 |
| $23 \leqslant w<25$ | 6 |

(a) Calculate an estimate for the mean weight, in grams to 3 significant figures, of these adult mice.
grams

One of these adult mice is selected at random.
(b) Find the probability that this mouse weighs less than 22 grams.

16 Andrew borrowed some money from Sarah.
He borrowed \$21250 on 1st January 2018
On 31st December each year, starting on 31st December 2018, Sarah charged Andrew interest of $4 \%$ on the amount of money that he owed her. This interest was added to the amount of money that Andrew owed Sarah.

On 1st January each year, starting on 1st January 2019, Andrew repaid \$4000 to Sarah.
(a) Show that before Andrew had repaid $\$ 4000$ to Sarah on 1st January 2019, he owed Sarah \$22 100

After Andrew had repaid $\$ 4000$ to Sarah on 1st January 2020,
(b) calculate how much money Andrew now owed Sarah.


The diagram shows a scale drawing of a garden in the shape of the rectangle $A B C D$. The position of a fountain in the garden is marked by a cross.

Tarik is going to plant a tree in the garden.
The tree must be
less than 2 metres from $A B$,
greater than 3 metres from the fountain, closer to $A B$ than to $A C$.

Using ruler and compasses only and showing all your construction lines, construct and show by shading the region in which Tarik can plant the tree. Label the region $\mathbf{R}$.


Diagram NOT accurately drawn

The diagram shows a trapezium $A B C D$.
$\angle A B C=\angle B C D=90^{\circ}$
$A B=5 \mathrm{~cm}$
$D C=9 \mathrm{~cm}$
The area of the trapezium $A B C D$ is $29.4 \mathrm{~cm}^{2}$
Calculate the length, in cm , of $A D$.

19 The sum of the interior angles of a regular polygon is $8280^{\circ}$
Calculate the size, in degrees, of each exterior angle of the regular polygon.

20 The numbers $p$ and $q$ are positive such that $p$ is inversely proportional to $\sqrt{q}$ $p=420$ when $q=9$

Calculate the value of $q$ when $p=28$


Diagram NOT accurately drawn

The diagram shows a triangle of area $A \mathrm{~cm}^{2}$ in which
$a=5.2$ to 1 decimal place
$b=8.4$ to 1 decimal place
$A=13$ to 2 significant figures.
Given that the angle marked $C^{\circ}$ is an acute angle,
calculate the lower bound, to 3 significant figures, of $C$.

22 Express $\frac{8-7 x}{6 x^{2}+7 x-10} \div\left(\frac{3}{5 x-1}-\frac{2}{x+2}\right)$ as a single fraction in its simplest form.
Show clear algebraic working.

23 A bag contains 20 balls. Each ball has either the number 5 on it or the number 6 on it.


There are 12 balls with the number 5
There are 8 balls with the number 6
Ben takes at random 2 balls from the bag.
(a) Complete the probability tree diagram.

First ball
Second ball

(3)
(b) Calculate the probability that the sum of the numbers on the two balls is greater than 10 Give your answer as a fraction.

24 The two digit number $M$ has tens digit $p$ and units $\operatorname{digit} q$ The two digit number $N$ has tens digit $q$ and units digit $p$

Given that $N-M=9$ and that $p+q=13$
find the value of $M$
Show clear algebraic working.

$$
M=
$$

25 By writing $8 x^{2}-56 x+17$ in the form $p(x+q)^{2}+r$ find the exact solutions of the equation

$$
8 x^{2}-56 x+17=0
$$

Give your answer in the form $\frac{a \pm b \sqrt{2}}{c}$ where $a, b$ and $c$ are integers. Show your working clearly.


Diagram NOT accurately drawn

The diagram shows a solid pyramid with a triangular base $A B C$, which is an equilateral triangle of side $8 \sqrt{3} \mathrm{~cm}$.

The base of the pyramid is on a horizontal surface and the vertex $V$ of the pyramid is vertically above the point $O$ of the base.

The edges $A V, B V$ and $C V$ of the pyramid are the same length and $O$ lies on $A M$, where $M$ is the midpoint of $C B$ and $A O: O M=2: 1$
Given that the total surface area of the pyramid is $150 \sqrt{3} \mathrm{~cm}^{2}$,
find the length, in cm , of $V O$.

27 Egan cycled 168 km at an average speed of $x \mathrm{~km} / \mathrm{h}$, Rohan cycled the 168 km at an average speed that was $2 \mathrm{~km} / \mathrm{h}$ less than Egan's average speed. Given that it took Rohan 12 minutes longer than Egan to cycle the 168 km , calculate the value of $x$

$$
x=.
$$

