F324 Mark F324 Rings, Polymers and Analysis

	Expected Answers		Additional Guidance	
1 (a)	$+ Br_2 \rightarrow Br + HBr$	1	ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+	
(b) (i)	White precipitate OR white solid OR white crystals ✓	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt <u>and</u> bubbles DO NOT ALLOW Br ₃ C ₆ H ₂ OH OR 2,4,6-tribromophenol OR tribromophenol	
(ii)	1,2-Dibromocyclohexane ✓	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C ₆ H ₁₀ Br ₂ OR structures	
(iii)	MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks benzene <u>electrons</u> or <u>m-bonds</u> are delocalised \checkmark phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark benzene cannot polarise or induce a dipole in Br ₂ OR phenol can polarise the Br ₂ OR cyclohexene can polarise Br ₂ or the Br–Br bond \checkmark	5	 ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a C=C double bond IGNORE slip if cyclohexene is written as cyclohexane but π - bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density ALLOW Br^{δ+} OR electrophile Br⁺ as alternate to polarise 	

F32	F324		Mark Sche	January 2010		
Q	Question		Expected Answers Marks		Additional Guidance	
2	2 (a) (i) <u>silver</u> n		<u>silver</u> mirror ✓	1	ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey	
		(ii)	HOCH₂COOH ✓	1	ALLOW CH ₂ OHCOOH OR CH ₂ OHCO ₂ H OR HOCH ₂ CO ₂ H OR displayed OR skeletal formula OR HOCH ₂ COO ⁻ DO NOT ALLOW C ₂ H ₄ O OR 2-hydroxyethanoic acid	
	(b)		$\begin{array}{rcl} HOCH_2CHO+3[O] \to HOOCCOOH &+ & H_2O \\ \text{reagents} &\checkmark & \text{both products} \checkmark \end{array}$	2	ALLOW displayed/skeletal formula/COOHCOOH $\checkmark \checkmark$ if molecular formula used C ₂ H ₄ O ₂ + 3[O] \rightarrow C ₂ H ₂ O ₄ + H ₂ O max = 1 \checkmark	
					Any correctly balanced equation for partial oxidation can score 1 mark \checkmark HOCH ₂ CHO + [O] \rightarrow HOCH ₂ COOH OR HOCH ₂ CHO + 2[O] \rightarrow OHCCOOH + H ₂ O OR HOCH ₂ CHO + [O] \rightarrow OHCCHO + H ₂ O OR HOCH ₂ CHO + 2[O] \rightarrow HOOCCHO + H ₂ O	
	(c)	(i)	HOCH₂CH₂OH ✓	1	ALLOW HO(CH ₂) ₂ OH OR (CH ₂ OH) ₂ OR skeletal formula OR displayed formula DO NOT ALLOW molecular formula (C ₂ H ₆ O ₂)	
		(ii)	curly arrow from H ⁻ to $C^{\delta^+} \checkmark$ dipoles <u>and</u> curly arrow from C=O bond to O \checkmark intermediate \checkmark curly arrow from intermediate to H ^{δ^+} in H ₂ O/H ⁺ and if H ₂ O is used it must show the curly arrow from the O–H bond to the O \checkmark <i>lone pairs are not essential</i>	4	 ALLOW curly arrow to C even if dipole missing or incorrect ALLOW maximum of 3 marks if incorrect starting material is used See page 36 for detailed mechanisms – <i>Alternative 3</i> scores all 4 marks even though the intermediate is not shown 	

F324		Mark Scheme	January 2010	
Ques	tion	Expected Answers		Additional Guidance
3 (a)	(i)	adsorption ✓	1	ALLOW partition OR adsorbtion IGNORE solubility OR desorption DO NOT ALLOW absorption
	(ii)	measure how far each spot travels relative to the solvent front or calculate the $R_{\rm f}$ value \checkmark compare $R_{\rm f}$ values to those for known amino acids \checkmark	2	ALLOW compare R_f values to database ALLOW compare to known amino acids DO NOT ALLOW retention times for first mark, but the 2nd mark would be available as \checkmark ECF ALLOW alternative approach: on the same plate compare position of spots \checkmark with known amino acids \checkmark
	(iii)	(amino acids won't separate because) similar compounds have similar $R_{\rm f}$ (values) \checkmark	1	ALLOW spots often overlap OR don't (fully) separate ALLOW they have similar R_f (values) or similar adsoptions or similar retention times ECF to a(ii)
(b)	(i)	H H ₂ NCOOH R ✓	1	ALLOW RCH(NH ₂)COOH any order for R, NH ₂ and COOH but C must be next to H ' <u>CH'</u> must be shown ALLOW CO_2H brackets around NH ₂ are not essential ALLOW structure
on H ₃	It is a reflection of the(ii) must attempt 3Duse RE symbol in the "tools" to denote whether or not each chiral C is a reflection of theone given in the question H_2N , H_3CH_2C		3	 each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. IGNORE bond linkage for all groups

F324	Mark Scheme		January 2010
(c)	$H_{3}^{+} = C_{CH_{3}}^{+} = C_{CH_{3}}^{-} = C_{CO}^{-} = H_{2}^{+} = C_{CO}^{-} = C_{CO}^{-} = H_{3}^{+} = C_{CO}^{-} = C_{CO}^{-} = C_{CO}^{-} = H_{3}^{+} = C_{CO}^{-} = C_{CO}^{-$		ALLOW CO ₂ ⁻ ALLOW NH ₃ ⁺ If NH ₃ fully displayed ALLOW + charge on N or H If COO fully displayed ALLOW ⁻ charge on O only
(d)	valine–glycine–leucine ✓	1	ALLOW val–gly–leu DO NOT ALLOW structures
(e)	H ₂ N(CH ₂) ₆ NH ₂ ✓ HOOC(CH ₂) ₈ COOH ✓	2	ALLOW H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ ALLOW HOOCCH ₂ CH ₂
	Total	14	

F32	4	Μ	ark Sche	me January 201
Question		Expected Answers	Marks	Additional Guidance
4	(a)	infrared – 1 mark only shows (very broad) peak between 2500–3300 (cm ⁻¹) (due to O–H bond) ✓	3	ALLOW (very broad) peak around 3000 (cm ⁻¹) OR any stated value between 2500 and 3300 (cm ⁻¹) for O–H DO NOT ALLOW peak in range 3200–3550 (cm ⁻¹) IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region
		¹³ C NMR – 2 marks (CH ₃) ₂ CHCH ₂ COOH has 4 peaks (due to 4 different C environments) \checkmark (CH ₃) ₃ CCOOH has 3 peaks (due to 3 different C environments) \checkmark		ALLOW ¹³ C NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark
	(b)	 splitting pattern explains any two in terms of 'n + 1 rule' for two marks ✓✓ Explains any one peak for 1 mark ✓ singlet therefore adjacent C (if any) has no Hs multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs doublet therefore adjacent C is bonded to 1H must spell one of multiplet / heptet, singlet, doublet correctly max = 2 marks 	6	 1 mark for correct ester if two splitting patterns are correctly analysed ignore the third ALLOW singlet because next or bonded to an O ALLOW multiplet/heptet because next to 2 CH₃s ALLOW doublet because next to a CH
		chemical shifts		ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3

F324	Ма	rk Scheme		January 2010
	 two marks if any two absorptions are identified correctly ✓✓ one mark if any one absorption is identified correctly ✓ peak ~3.7 (ppm) – bonded to an O peak ~2.7 (ppm) – indicates it is next to a C=O peak ~1.2 (ppm) – bonded to other Cs OR part of a chain max = 2 marks 	HC—O 3.7 (ppm) ALLOW po ALLOW si doublet to	HC C 2.7 (ppm) eaks labelled on the spectrum nglet must be bonded to O, mu CH or R for both chemical shift nical shifts are correctly identifie	R—CH 1.2 (ppm) Itiplet to C=O and marks
	compound identified as $(CH_3)_2CHCOOCH_3 \checkmark \checkmark$ 2 marks compound identified as $CH_3COOCH(CH_3)_2 \checkmark$ 1 mark			
	Total	9		

F324		I	Mark Scl	heme January 2010
	(ii)	$\begin{array}{c} C_{10}H_{11}NO_{3} \text{ is } \\ H_{3}C \\ H_{$	1	ALLOW amide shown as either CH ₃ CONH– OR H ₃ CCONH– OR CH ₃ COHN– OR H ₃ CCOHN– ALLOW ester shown as either –OCOCH ₃ OR –OOCCH ₃
	(iii)	to ensure that there are no (harmful) side effects \checkmark	1	ALLOW impurities reduce effectiveness (of drug) OR might be toxic OR avoids litigation OR harmful OR hazardous ALLOW to ensure that the drug/active component is safe IGNORE dangerous OR nasty OR can kill OR increased dosage
(c)		(aspirin contains) ester AND carboxylic acid ✓ (paracetamol contains) amide AND phenol ✓	2	IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW carboxyl group DO NOT ALLOW acid IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW peptide ALLOW hydroxy(I) DO NOT ALLOW hydroxide or alcohol DO NOT ALLOW amine
(d)	(i)	Both	3	ALLOW hydrolysis by $H^+(aq)$ or H^+ or $HCl(aq)$ or HCl or $H_2SO_4(aq)$

F324	Mark Scheme	January 2010
Br ₂ ✓ H ₃ C O H ₃ C O H Br	 ALLOW one or more Br at any positive DO NOT ALLOW Br substitution of ALLOW acyl chloride or acid anhydrowing ALLOW FeCl₃ to form a purple com ALLOW diazonium and structure shone of the Hs in the ring if no reagent there cannot be any main and paracetamol ALLOW ✓ ECF for a paracetamol ALLOW ← ECF for a paracetamol ALLOW ←	OH ride and corresponding ester <u>plex ion</u> (structure not required) nowing azo group substituting arks for the products rould react with BOTH aspirin
	Total 14	