A-level Mathematics
MPC3-Pure Core 3
Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations	
M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a) (b)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) A x\left(5+3 x^{2}\right)^{-\frac{1}{2}} \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) \quad 3 x\left(5+3 x^{2}\right)^{-\frac{1}{2}} \quad \mathbf{O E} \\ & x+B \cos 4 x \\ & x-\frac{1}{4} \cos 4 x \\ & x-\frac{1}{4} \cos 4 x+c \text { (onstant) } \end{aligned}$	M1 A1 M1 A1 A1	2	correct possibly unsimplified $\text { CAO with }+c$
	Total		5	
(a)	Allow $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \quad \frac{1}{2} \times 2 \times 3 x\left(5+3 x^{2}\right)^{-\frac{1}{2}}$ etc for full marks with ISW Also allow use of implicit differentiation $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x$ for M1 and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x}{2 y}$ OE for A1			

(a)(ii) Condone, stretch (in) x (-axis), scores M1, then A1 available with correct SF

Alt 2: Translation $\left[\begin{array}{l}k \\ 0\end{array}\right] \quad k=-\frac{3}{4} \quad$ M1A1 \quad Translation $\left[\begin{array}{l}0 \\ l\end{array}\right] \quad l=\ln 2 \quad$ M1A1
(b)(i) May use $\frac{0.5}{3}\{\ln 7+\ln 15+4(\ln 9+\ln 13)+2 \ln 11\}=\frac{1}{6}\{\ln 105+4(\ln 117)+2 \ln 11\}$ etc to earn B1 M1 A1 (implied)
(ii) Use of Simpson's rule scores M0

Q5	Solution	Mark	Total	Comment
(a)(i)	$\begin{aligned} & x=\sqrt{2 y+3} \\ & x^{2}=2 y+3 \Rightarrow y= \frac{1}{2}\left(x^{2}-3\right) \\ & {\left[\mathrm{f}^{-1}(x)\right]=\frac{1}{2}\left(x^{2}-3\right) } \end{aligned}$	M1 M1 A1	3	M1 M1 may be in either order Interchange x and y; Isolate y / x; OE
(ii)	$x \ldots 1$	B1	1	
(b)	$x^{2}+4 x=(x+2)^{2}-4$ Minimum value of $\mathrm{g}(x)$ is - 4 PI Range of g is $\mathrm{g}(x) \ldots-4$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Showing $x=-2$ when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
(c)(i) (ii)	$\operatorname{gf}(x)=(\sqrt{2 x+3})^{2}+4 \sqrt{2 x+3} \quad$ oe	B1	1	
	$4 \sqrt{2 x+3}=18-2 x$	M1		Square root term isolated
	$\begin{aligned} & 4(2 x+3)=(9-x)^{2} \\ & {\left[8 x+12=81-18 x+x^{2}\right]} \end{aligned}$	A1		Squaring both sides
	$x^{2}-26 x+69[=0]$	A1		
	$x=3, \quad x=23$ [Reject $x=23$ since does not satisfy equation] [Only valid solution is] $x=3$	A1 A1cso	5	
	Total		13	
(a)(i) (b)	Condone $y=\frac{1}{2}\left(x^{2}-3\right)$ or $\frac{1}{2}\left(x^{2}-3\right)$ for fina Note: SC3 for $\mathrm{g}(x) \ldots-4$; SC2 for $\mathrm{g}(x)>-4$ or $y \ldots-4$ or g . SC1 for $y>-4$ etc BUT $x \ldots-4, \quad \mathrm{f}(x) \ldots-4 \operatorname{scores} \operatorname{SC0}$	11 -4 or	Range	$. .-4 \quad \text { or } \quad . .-4$
(c)(ii)	Alternative: $\mathrm{g}(y)=21 ; y^{2}+4 y-21=0 \mathbf{M 1} \Rightarrow y=-7, y=3 \mathbf{A 1} \mathbf{A 1} ; \quad x=3,23 \mathbf{A 1}$ $x=3$ and no other solution A1cso			

Q6	Solution	Mark	Total	Comment
	$u=2+\ln x \Rightarrow \mathrm{~d} u=\frac{1}{x} \mathrm{~d} x$ $\begin{aligned} & \int \frac{u-2}{u^{2}} \mathrm{~d} u \\ & \int\left(\frac{A}{u}+\frac{B}{u^{2}}\right) \mathrm{d} u=A \ln u+\frac{C}{u} \\ & \ln u+\frac{2}{u} \\ & {\left[\ln 3+\frac{2}{3}\right]-[\ln 2+1]} \\ & =-\frac{1}{3}+\ln \left(\frac{3}{2}\right) \end{aligned}$	B1 M1 A1 dM1 A1 dM1 A1	7	may have $x=\mathrm{e}^{u-2}$ etc clear attempt to get integral all in terms of u including $\mathrm{d} x$ in terms of $\mathrm{d} u$ correct - condone omission of $\mathrm{d} u$ if seen on later line Integration by parts gives $\int=\ln u+\frac{2}{u}-1$ correct substitution of correct limits but must have earned previous dM1
	Total		7	
	Accept $\int \frac{A u}{u^{2}} \mathrm{~d} u=0.5 A \ln u^{2}$ May see integration by parts For second dM1 candidate may correctly change back to ' x ' then use original limits ' +c ' on final line loses final A1			

Q8	Solution	Mark	Total	Comment
(a)	$\frac{\sec \theta(\sec \theta+1)+\sec \theta(\sec \theta-1)}{(\sec \theta-1)(\sec \theta+1)} \quad \mathbf{O E}$	B1		Common denominator (could be 2 separate fractions), all in terms of $\sec \theta$
	Use of $\sec ^{2} \theta=1+\tan ^{2} \theta$	M1		used
	$\frac{2 \sec ^{2} \theta}{\tan ^{2} \theta}$			OR $\frac{2+2 \tan ^{2} \theta}{\tan ^{2} \theta}$
	$=\frac{2}{}=2 \operatorname{cosec}^{2} \theta$	A1		$=2+2 \cot ^{2} \theta=2 \operatorname{cosec}^{2} \theta$
	$\sin ^{2} \theta$	A1	3	AG be convinced
				Penalise poor notation for final A1 (consult team leader)
(b)	$2 \operatorname{cosec}^{2} \theta=8-\cot \theta$			
	$2\left(1+\cot ^{2} \theta\right)=8-\cot \theta$	M1		Use of $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$
	$2 \cot ^{2} \theta+\cot \theta-6=0$	A1		Must see $=0$, this line or next line
	$(2 \cot \theta-3)(\cot \theta+2)[=0]$	dM1		Correctly factorising/solving their quadratic in cot (PI by next A1 earned)
	$\tan \theta=\frac{2}{3},-\frac{1}{2} \quad \text { or } \quad \cot \theta=\frac{3}{2},-2$	A1		OE
	0.58800.., 3.72959.., 2.6779.., 5.819537..	B1		sight of any of these values correct to at least 3 sf rounded or truncated PI
	$(x=) 0.0940,1.66,1.14,2.71$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	7	3 correct at least 3sf all 4 correct to 3 sf and no others in interval (ignore answers outside interval)
	Total		10	
(a)	Alternative 1: $\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=\frac{1+\cos \theta+1-\cos \theta}{(1-\cos \theta)(1+\cos \theta)} \quad \mathbf{B 1}, 1-\cos ^{2} \theta=\sin ^{2} \theta$ used M1 etc			
	Alternative 2: $2 \operatorname{cosec}^{2} \theta=\frac{2}{\sin ^{2} \theta}=\frac{2}{1-\cos ^{2} \theta} \mathbf{B 1} \frac{2}{(1-\cos \theta)(1+\cos \theta)}=\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}$ M1 etc			
(b)	Alternative: $2=8 \sin ^{2} \theta-\sin \theta \cos \theta$ hence $2\left(1+\tan ^{2} \theta\right)=8 \tan ^{2} \theta-\tan \theta \mathbf{M 1}$ with A1 for a quadratic in $\tan \theta: 6 \tan ^{2} \theta-\tan \theta-2=0 ;(3 \tan \theta-2)(2 \tan \theta+1)=0$ dM1 factors etc			

