

A-level Mathematics

MPC3-Pure Core 3 Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

M m or dM	mark is for method mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous
	incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = Ax\left(5+3x^2\right)^{-\frac{1}{2}}$	M1		
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 3x\left(5+3x^2\right)^{-\frac{1}{2}} \mathbf{OE}$	A1	2	correct possibly unsimplified
(b)	$x + B\cos 4x$	M1		
	$x - \frac{1}{4}\cos 4x$	A1		
	$x - \frac{1}{4}\cos 4x + c(onstant)$	A1	3	CAO with $+c$
	Total		5	
(a)	Allow $\left(\frac{dy}{dx}\right) = \frac{1}{2} \times 2 \times 3x (5 + 3x^2)^{-\frac{1}{2}}$ etc for full marks with ISW Also allow use of implicit differentiation $2y \frac{dy}{dx} = 6x$ for M1 and $\frac{dy}{dx} = \frac{6x}{2y}$ OE for A1			

Q2	Solution	Mark	Total	Comment
(a)	$\frac{\sin x(-\sin x) - \cos x(\cos x)}{\sin^2 x}$	M1		Condone 'poor' use of brackets
	Use of $\sin^2 x + \cos^2 x = 1$ OE $\left(\frac{d(\cot x)}{dx}\right) = \frac{-1}{\sin^2 x} = -\csc^2 x$	A1	2	AG be convinced
(b)(i)	$\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = -1 - 3\mathrm{cosec}^2 3y \qquad \mathbf{OE}$	M1 A1	2	$-1+k \operatorname{cosec}^2(3p)$ $k \neq 0$, $p = x$ or y correct
(ii)	$y = \frac{\pi}{12} \Rightarrow \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = -1 - 3\mathrm{cosec}^2\left(\frac{3\pi}{12}\right)$	M1		Correct substitution of $\pi/4$ into expression of form $-1+k \operatorname{cosec}^2 3y$ $k \neq 0$ PI
	Grad of tangent = $1/(dx/dy)$	M1		FT reciprocal of "their" dx/dy
	Grad of tangent = $-\frac{1}{7}$	A1		Must have scored M1M1
	$y = -\frac{1}{7}x + \frac{\pi}{12} + \frac{1}{7}$	A1cso	4	
	Total		8	
(a)	$\frac{\sin x - \sin x - \cos x \cos x}{\sin x^2} \text{ scores } \mathbf{M1A0}$ Numerator must have 'two negatives'		0	
(b)(ii)	The two M1 marks could be seen in either o 2^{nd} M mark can be earned by $x = (their(-7))^{nd}$	rder)) $y + c$ bu	t A marl	k only earned when $-\frac{1}{7}$ seen

Q3	Solution	Mark	Total	Comment
(a)(i)	<i>y</i> •	M1		"log" graph correct shape in 1 st and 4 th
				quadrants Graph not touching y-axis
	O $(\frac{1}{2}, 0)$ x	A1	2	cuts <i>x</i> -axis at $(\frac{1}{2}, 0)$ stated or 0.5 marked on <i>x</i> -axis and no other intersections with coordinate axes
(ii)	Stretch + either I or II Parallel to x-axis I	M1		Alt 1: Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$ M1
	SF $\frac{1}{2}$ II	A1		$k = -\frac{3}{4}$ A1
	Followed by Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	M1		2 Followed by Stretch in <i>x</i> -direction M1 SF $\frac{1}{2}$ A1
	$k = -\frac{3}{4}$	A1	4	
(b)(i)	$x_1 = 1; x_2 = 1.5; x_3 = 2; x_4 = 2.5; x_5 = 3$	B1		all 5 correct <i>x</i> -values (& no extras) used
	$\frac{0.5}{3} \{ f(1) + f(3) + 2f(2) + 4f(1.5) + 4f(2.5) \}$	M1		Simpson's rule used correctly
	$\begin{split} f(1) &= \ln 7 \approx 1.94591 \ f(1.5) = \ln 9 \approx 2.19722 \\ f(2) &= \ln 11 \approx 2.397895 \ f(2.5) = \ln 13 \approx 2.564949 \\ f(3) &= \ln 15 \approx 2.708050 \end{split}$	 A1		at least 4 correct <i>y</i> -values in exact form or decimals, rounded or truncated to 4dp or better (in table or formula) PI
	<i>Answer</i> = 4.7497	A1	4	CAO must see this value exactly NB NOT for 4.749845 to 6 dp (obtained by exact integration)
(ii)	$I = \int \ln e dx + \int \ln(3+4x) dx$	M1		or single integral split as sum of two correct terms (including brackets), but condone omission of dx
	$= [x \ln e]_{1}^{3} + A = 2 \ln e + A = A + 2$	A1	2	AG be convinced
(a)(ii)	Total Condone, stretch (in) x(-axis), scores M1,	then A1	12 available	e with correct SF
	Alt 2: Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$ $k = -\frac{3}{4}$ M1A1	Transl	ation $\begin{bmatrix} 0\\ l \end{bmatrix}$	$l = ln2 \qquad M1A1$
(b)(i) (ii)	May use $\frac{0.5}{3}$ {ln 7 + ln 15 + 4(ln 9 + ln 13) + 2ln 11} = Use of Simpson's rule scores M0	$=\frac{1}{6}\{\ln 105 -$	+4(ln117)	$+2\ln 11$ etc to earn B1 M1 A1 (implied)

Q4	Solution	Mark	Total	Comment	
(a)(i)	$k = \frac{\pi}{2}$	B1	1	Not 90° alone, but $\frac{\pi}{2}$ or 90 scores B1	
(ii)	-			_	
		B1	1	modulus graph as shown with cusp at <i>O</i> roughly symmetrical and curve approaching but not crossing asymptote	
(iii)	Line $y=3+7x$ drawn	M1		gradient >0 which would cut <i>y</i> -axis above	
	Line cuts curve exactly once so there is exactly one real root	Δ1	2	upper asymptote	
	exactly one real loot		2		
(b)	$f(x) = \tan^{-1} x - 7x - 3;$				
	f(-0.4) = 0.1805 $f(-0.3) = -0.6085$	M1		Both values correct	
	change of sign indicates α lies between -0.4 and -0.3	A1	2	(maybe rounded or truncated to 1dp)	
(c)	$x_2 = -0.374$ $x_3 = -0.377$	B1,B1	2	exactly these values	
	Total		8		
(a)(i)	Answer may be in body of script				
(b)	$g(x) = \tan^{-1} x $ and $h(x) = 7x + 3;$				
	Alternative: $g(-0.4) = 0.38$ $h(-0.4) = 0.2$				
	g(-0.3) = 0.29 $h(-0.3) = 0.9$				
	values correct when rounded or truncated to 1dp for M1				
	then $g(-0.4) > h(-0.4)$ hence α lies between -0.4 and -0.3 A1				
	g(-0.3) < n(-0.3)	low "r"	"root" "s	solution" for "a" but not "it"	
		ют,	1001, 3		

Q5	Solution	Mark	Total	Comment	
				M1 M1 may be in either order	
(a)(i)	$x = \sqrt{2y+3}$	M1		Interchange r and v ·	
(ປ)(1)	$\frac{1}{2}$ 2 2 2 1 $\frac{1}{2}$ 2	M1		Isolate y/r -	
	$x = 2y + 3 \Longrightarrow y = \frac{-(x - 3)}{2}$	1911			
	$\left[f^{-1}(x)\right] = \frac{1}{2}(x^2 - 3)$	A1	3	OE	
(ii)	<i>x</i> 1	B1	1		
(b)	$x^2 + 4x = (x+2)^2 - 4$	M1		Showing $x = -2$ when $\frac{dy}{dx} = 0$	
	Minimum value of $g(x)$ is -4 PI Range of g is $g(x) \dots -4$	A1 A1	3		
(c)(i)	gf(x) = $(\sqrt{2x+3})^2 + 4\sqrt{2x+3}$ oe	B1	1		
(ii)	$4\sqrt{2x+3} = 18-2x$	M1		Square root term isolated	
	$2\sqrt{2x+3} = 9-x$ $4(2x+3) = (9-x)^2$ or	A1		Squaring both sides	
	$[8x+12=81-18x+x^{2}]$			1 0	
	$x^2 - 26x + 69 [= 0]$	A1			
	x = 3, x = 23	A1			
	[Reject $x = 23$ since does not satisfy equation]				
	[Only valid solution is] $x=3$	A1cso	5		
	Total		13		
(a)(i)	Condone $y = \frac{1}{2}(x^2 - 3)$ or $\frac{1}{2}(x^2 - 3)$ for final	A1			
(b)) Note: SC3 for $g(x) \dots -4$;				
	SC2 for $g(x) > -4$ or $y \dots -4$ or $g \dots -4$ or Range $\dots -4$ or $\dots -4$				
	SCI for $y > -4$ etc BUT $x \dots -4$, $f(x) \dots -4$ scores SC0				
(c)(ii)	NMS or if M1 is not earned " $x = 3$ " scores S	SC1,	BUT mu	ast have scored B1 in (c)(i)	
	Alternative: $g(y) = 21$; $y^2 + 4y - 21 = 0$ M1 x = 3 and no other solution Alcso	$\Rightarrow y = -7$	y = 3 A1	A1; $x = 3, 23$ A1	

Q6	Solution	Mark	Total	Comment	
	$u = 2 + \ln x \Longrightarrow du = \frac{1}{x} dx$ OE	B1		may have $x = e^{u-2}$ etc	
		M1		clear attempt to get integral all in terms of u including dx in terms of du	
	$\int \frac{u-2}{u^2} \mathrm{d}u$	A1		correct – condone omission of du if seen on later line	
	$\int \left(\frac{A}{u} + \frac{B}{u^2}\right) du = A \ln u + \frac{C}{u}$	dM1			
	$\ln u + \frac{2}{u}$	A1		Integration by parts gives $\int = \ln u + \frac{2}{u} - 1$	
	$\left[\ln 3 + \frac{2}{3}\right] - \left[\ln 2 + 1\right]$	dM1		correct substitution of correct limits but must have earned previous dM1	
	$=-\frac{1}{3}+\ln\left(\frac{3}{2}\right)$	A1	7		
	Total		7		
	Accept $\int \frac{Au}{u^2} du = 0.5A \ln u^2$				
	May see integration by parts For second dM1 candidate may correctly change back to 'x' then use original limits '+c' on final line loses final A1				

Q7	Solution	Mark	Tot	Comment	
(a)	$\frac{dy}{dx} = e^{-3x} - 3(x-1)e^{-3x}$	M1 A1	aı	$e^{-3x} + A(x-1)e^{-3x}$ OE A = -3	
	Equate gradient to 0, hence $x = \frac{4}{3}$	A1cso	3	AG be convinced, must see a middle line	
(b) (i)	$u = (x-1)^2 \frac{\mathrm{d}v}{\mathrm{d}x} = \mathrm{e}^{-6x}$	M1		<i>u</i> and $\frac{dv}{dx}$ correct and 4 terms in this form	
	$\frac{du}{dx} = 2(x-1) v = -\frac{1}{6}e^{-6x}$	A1		all correct	
	$I = -\frac{1}{6}(x-1)^2 e^{-6x} + \frac{1}{3} \int (x-1) e^{-6x} dx$	dM1		correct sub of their terms into parts formula	
	$\int (x-1)e^{-6x}dx = -\frac{(x-1)}{6}e^{-6x} + \int \frac{1}{6}e^{-6x}dx$	M1		must be correct but may be seen anywhere in solution	
	$= -\frac{(x-1)}{6}e^{-6x} - \frac{1}{36}e^{-6x}$	A1			
	$\int = -\frac{1}{6}(x-1)^2 e^{-6x} - \frac{(x-1)}{18} e^{-6x} - \frac{1}{108} e^{-6x}$	A1	6	OE condone omission of +c	
(ii)	c ²		Ŭ	SEE BELOW FOR ALT SOLN	
(,	$\pi \int_{1} (x-1)^2 e^{-6x} dx$	B1		must have π , dx and correct limits	
	$(\pi) \left(-\frac{1}{6} e^{-12} - \frac{1}{18} e^{-12} - \frac{1}{108} e^{-12} + \frac{1}{108} e^{-6} \right)$	M1		correct sub of 1 and 2 into their part (b)(i) answer, but must be terms of the form $(4x^2 + Bx + C)e^{-6x} = 0E$	
	(Volume =) $\frac{\pi}{108} \left(e^{-6} - 25e^{-12} \right)$ OE	A1	3	$(Ax + bx + C)e \qquad OE$ like terms collected	
	Total		12		
(a) (b)(i)	Condone omission of dx throughout				
	Alt: If a candidate expands $(x-1)^2 = x^2 - 2x + 1$, then				
	$u = x^{2}$ $\frac{dv}{dx} = e^{-6x}$ $\frac{du}{dx} = 2x$ $v = -\frac{1}{6}e^{-6x}$ M	/1 1A1	u and	$\frac{dv}{dx}$ correct and 4 terms in this form	
	$\int x^2 e^{-6x} dx = -\frac{1}{6} x^2 e^{-6x} + \frac{1}{6} \int 2x e^{-6x} dx$	dM1	correct	sub of their terms into parts formula	
	$\int x e^{-6x} dx = -\frac{x}{6} e^{-6x} + \int \frac{1}{6} e^{-6x} dx$	M1 mu	st be c	orrect but may be seen anywhere in solution	
	$= -\frac{x}{6}e^{-6x} - \frac{1}{36}e^{-6x}$	A1			
	$\int = e^{-6x} \left(-\frac{1}{6}x^2 + \frac{5}{18}x - \frac{13}{108} \right) \mathbf{OE}$	A1			

Q8	Solution	Mark	Total	Comment
(a)	$\frac{\sec\theta(\sec\theta+1)+\sec\theta(\sec\theta-1)}{(\sec\theta-1)(\sec\theta+1)} \qquad \mathbf{OE}$	B1		Common denominator (could be 2 separate fractions), all in terms of $\sec\theta$
	Use of $\sec^2 \theta = 1 + \tan^2 \theta$	M1		used
	$\frac{2\sec^2\theta}{\tan^2\theta} = \frac{2}{\sin^2\theta} = 2\csc^2\theta$	A1	3	OR $\frac{2 + 2 \tan^2 \theta}{\tan^2 \theta}$ $= 2 + 2 \cot^2 \theta = 2 \csc^2 \theta$ AG be convinced Penalise poor notation for final A1
(b)	$2aaaaa^20 - 8$ and 0			(consult team leader)
	$2(1 + \cot^{2}\theta) = 8 - \cot\theta$ $2(1 + \cot^{2}\theta) = 8 - \cot\theta$ $2\cot^{2}\theta + \cot\theta - 6 = 0$ $(2\cot\theta - 3)(\cot\theta + 2) \ [=0]$	M1 A1 dM1		Use of $\csc^2\theta = 1 + \cot^2\theta$ Must see = 0, this line or next line Correctly factorising/solving their quadratic in act (PL by next A1 carned)
	$\tan \theta = \frac{2}{3}, -\frac{1}{2}$ or $\cot \theta = \frac{3}{2}, -2$	A1		OE (FI by hext AI earned)
	0.58800, 3.72959, 2.6779, 5.819537	B1		sight of any of these values correct to at least 3sf rounded or truncated PI
	(<i>x</i> =) 0.0940, 1.66, 1.14, 2.71 [B1 B1	7	3 correct at least 3sf all 4 correct to 3sf and no others in interval (ignore answers outside interval)
	Total		10	
(a)	Alternative 1: $\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} = \frac{1+\cos\theta+1-\cos\theta}{(1-\cos\theta)(1+\cos\theta)}$ B1, $1-\cos^2\theta = \sin^2\theta$ used M1 etc Alternative 2: $2\csc^2\theta = \frac{2}{\sin^2\theta} = \frac{2}{1-\cos^2\theta}$ B1 $\frac{2}{(1-\cos\theta)(1+\cos\theta)} = \frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta}$ M1 etc			
(b)	Alternative: $2 = 8\sin^2 \theta - \sin \theta \cos \theta$ hence 2 with A1 for a quadratic in $\tan \theta$: $6\tan^2 \theta - \tan^2 \theta$	$2(1 + \tan^2 \theta - 2 =$	θ) = 8 tan 0; (3 tan	$h^2 \theta - \tan \theta \mathbf{M1}$ $(\theta - 2)(2 \tan \theta + 1) = 0 \mathbf{M1}$ factors etc