

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6684/01)

June 2009 6684 Statistics S2 Mark Scheme

Question Number		Scheme	Mar	ks
Q1	(a)	$[X \sim B(30, 0.15)]$		
		$P(X \le 6)$, = 0.8474 awrt 0.847	M1, A1	(2)
	(b)	$Y \sim B(60, 0.15) \approx Po(9)$ for using Po(9)	B1	
		$P(Y \le 12)$, = 0.8758 awrt 0.876	M1, A1	(3)
		[N.B. normal approximation gives 0.897, exact binomial gives 0.894]		[5]
	(a)	M1 for a correct probability statement $P(X \le 6)$ or $P(X < 7)$ or $P(X = 0) + P(X = 1) + P(X = 2) + P(X = 4) + P(X = 5) + P(X = 6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74%		
	(b)	B1 may be implied by using Po(9). Common incorrect answer which implies this is 0.9261		
		M1 for a correct probability statement $P(X \le 12)$ or $P(X < 13)$ or $P(X = 0) + P(X = 1) + + P(X = 12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution.		
		Condone P ($X \le 13$) = 0.8758 for B1 M1 A1		
		Correct answer gets B1 M1 A1		
		Use of normal or exact binomial get B0 M0 A0		

Question Number	Scheme	Marks	
Q2	H_0 : $\lambda = 2.5$ (or $\lambda = 5$) H_1 : $\lambda < 2.5$ (or $\lambda < 5$) λ or μ	B1B1	
	$X \sim \text{Po}(5)$	M1	
	$P(X \le 1) = 0.0404$ or $CR \ X \le 1$	A1	
	[0.0404 $<$ 0.05] this is significant or reject H_0 or it is in the critical region	M1	
	There is evidence of a <u>decrease</u> in the (mean) <u>number/rate</u> of <u>deformed blood cells</u>		(6) [6]
	 1st B1 for H₀ must use lambda or mu; 5 or 2.5. 2nd B1 for H₁ must use lambda or mu; 5 or 2.5 1st M1 for use of Po(5) may be implied by probability(must be used not just seen) eg. P (X = 1) = 0.0404 would score M1 A0 1st A1 for 0.0404 seen or correct CR 2nd M1 for a correct statement (this may be contextual) comparing their probability and 0.05 (or comparing 1 with their critical region). Do not allow conflicting statements. 2nd A1 is not a follow through. Need the word decrease, number or rate and deformed blood cells for contextual mark. If they have used ≠ in H₁ they could get B1 B0 M1 A1 M1A0 mark as above except they gain the 1st A1 for P(X ≤ 1) = 0.0404 or CR X ≤ 0 2nd M1 for a correct statement (this may be contextual) comparing their probability and 0.025 (or comparing 1 with their critical region) They may compare with 0.95 (one tail method) or 0.975 (one tail method) Probability is 0.9596. 		

Quest		Scheme	Marks	
Q3	(a)	A statistic is a function of X_1, X_2, X_n	B1	
		that does not contain any unknown parameters	B1	(2)
	(b)	The <u>probability</u> distribution of Y or the distribution of all possible values of Y (o.e.)	B1	(1)
	(c)	Identify (ii) as not a statistic Since it contains unknown parameters μ and σ .	B1 dB1	(2)
				[5]
	(a)	Examples of other acceptable wording:		
		B1 e.g. is a function of the sample or the data $/$ is a quantity calculated from the sample or the data $/$ is a random variable calculated from the sample or the data		
		B1 e.g. does not contain any unknown parameters/quantities contains only known parameters/quantities only contains values of the sample		
		Y is a function of X_1, X_2, X_n that does not contain any unknown parameters B1B1		
		is a function of the values of a sample with no unknowns B1B1		
		is a function of the sample values B1B0		
		is a function of all the data values B1B0		
		A random variable calculated from the sample A random variable consisting of any function B1B0 B0B0		
		A function of a value of the sample B1B0		
		A function of a value of the sample A function of the sample which contains no other values/ parameters B1B0		
	(b)			
		Examples of other acceptable wording		
		All possible values of the statistic together with their associated probabilities		
	(c)			
		1 st B1 for selecting only (ii)		
		2 nd B1 for a reason. This is dependent upon the first B1. Need to mention at least one		
		of mu (mean) or sigma (standard deviation or variance) or unknown parameters. Examples		
		since it contains mu B1		
		since it contains sigma B1		
		since it contains unknown parameters/quantities B1		
		since it contains unknowns B0		

Question Number	Scheme	Mar	ks
Q4 (a)	$X \sim B(20, 0.3)$ $P(X \le 2) = 0.0355$ $P(X \le 9) = 0.9520$ so $P(X \ge 10) = 0.0480$ Therefore the critical region is $\{X \le 2\} \cup \{X \ge 10\}$	M1 A1 A1 A1A1	(5)
(b)	0.0355 + 0.0480 = 0.0835 awrt (0.083 or 0.084)	B1	(1)
(c)	11 is in the critical region there is evidence of a <u>change/ increase</u> in the <u>proportion/number</u> of <u>customers buying single tins</u>	B1ft B1ft	(2) [8]
(a)	M1 for B(20,0.3) seen or used 1^{st} A1 for 0.0355 2^{nd} A1 for 0.048 3^{rd} A1 for $(X) \le 2$ or $(X) < 3$ or $[0,2]$ They get A0 if they write $P(X \le 2/X < 3)$ 4^{th} A1 $(X) \ge 10$ or $(X) > 9$ or $[10,20]$ They get A0 if they write $P(X \ge 10/X > 9)$ 10 $\le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X .		
(c)	B1 correct answer only 1 st B1 for a correct statement about 11 and their critical region. 2 nd B1 for a correct comment in context consistent with their CR and the value 11		
	Alternative solution 1^{st} B0 $P(X \ge 11) = 1 - 0.9829 = 0.0171$ since no comment about the critical region 2^{nd} B1 a correct contextual statement.		

Question Number	Scheme	Ma	arks
Q5 (a)	$X = \text{the number of errors in } 2000 \text{ words}$ so $X \sim Po(6)$ $P(X \ge 4) = 1 - P(X \le 3)$ = 1 - 0.1512 = 0.8488 awrt 0.849	B1 M1 A1	(3)
(b)	$Y =$ the number of errors in 8000 words. $Y \sim Po(24)$ so use a <u>Normal</u> approx $Y \approx N(24, \sqrt{24}^2)$	M1 A1	
	Require $P(Y \le 20) = P\left(Z < \frac{20.5 - 24}{\sqrt{24}}\right)$	M1 M1	
	= P(Z < -0.714)	A1	
	= 1 - 0.7611 $= 0.2389$ awrt (0.237~0.239)	M1 A1	(7)
	[N.B. Exact Po gives 0.242 and no ± 0.5 gives 0.207]		[10]
(a)	B1 for seeing or using Po(6) M1 for 1 - P($X \le 3$) or 1 - [P($X = 0$) + P($X = 1$) + P($X = 2$) + P($X = 3$)] A1 awrt 0.849		
SC	If B(2000, 0.003) is used and leads to awrt 0.849 allow B0 M1 A1 If no distribution indicated awrt 0.8488 scores B1M1A1 but any other awrt 0.849 score	s B0M	1A1
(b)	1^{st} M1 for identifying the normal approximation 1^{st} A1 for [mean = 24] and [sd = $\sqrt{24}$ or var = 24]		
	These first two marks may be given if the following are seen in the standardisation formula : 24 $\sqrt{24}$ or awrt 4.90		
	2^{nd} M1 for attempting a continuity correction (20/28 \pm 0.5 is acceptable) 3^{rd} M1 for standardising using their mean and their standard deviation.		
	2 nd A1 correct z value awrt ± 0.71 or this may be awarded if see $\frac{20.5 - 24}{\sqrt{24}}$ or $\frac{27.5 - 24}{\sqrt{24}}$	-	
	4^{th} M1 for 1 - a probability from tables (must have an answer of < 0.5) 3^{rd} A1 answer awrt 3 sig fig in range $0.237 - 0.239$		

Question Number	Scheme	Mark	(S
Q6 (a)	$P(A > 3) = \frac{2}{5} = 0.4$	B1	(1)
	$(0.4)^3$,= 0.064 or $\frac{8}{125}$	M1, A1	(2)
(c)	$f(y) = \frac{d}{dy}(F(y)) = \begin{cases} \frac{3y^2}{125} & 0 \le y \le 5\\ 0 & otherwise \end{cases}$	M1A1	(2)
(d)	(o onterwise	B1	
	Shape of curve and start at (0,0) Point (5, 0) labelled and curve between 0 and 5 and	B1	(2)
	5 $pdf \ge 0$		
(e)	Mode = 5	B1	(1)
(f)	$E(Y) = \int_{0}^{5} \left(\frac{3y^{3}}{125}\right) dy = \left[\frac{3y^{4}}{500}\right]_{0}^{5} = \frac{15}{4} \text{ or } 3.75$	M1M1A1	(3)
(g)	$P(Y > 3) = \begin{cases} \int_{3}^{5} \frac{3y^2}{125} dy \\ \text{or } 1 - F(3) \end{cases} = 1 - \frac{27}{125} = \frac{98}{125} = 0.784$	M1A1	(2) [13]
(a) (b)	B1 correct answer only(cao). Do not ignore subsequent working M1 for cubing their answer to part (a)		
(c)	A1 cao M1 for attempt to differentiate the cdf. They must decrease the power by 1 A1 fully correct answer including 0 otherwise. Condone < signs		
(d)	B1 for shape. Must curve the correct way and start at $(0,0)$. No need for $y=0$ (patios) lines B1 for point $(5,0)$ labelled and pdf only existing between 0 and 5, may have $y=0$ (patios) for other values		
(e)	B1 cao		
(f)	1 st M1 for attempt to integrate their $yf(y) y^n \rightarrow y^{n+1}$. 2 nd M1 for attempt to use correct limits A1 cao		
(g)	M1 for attempt to find $P(Y > 3)$.		
	e.g. writing $\int_{3}^{5} their f(y)$ must have correct limits		
	or writing $1 - F(3)$		

Ques		Scheme	Mark	(S	
Q7	(a)	E(X) = 2 (by symmetry)	B1	(1)	
	(b)	$0 \le x < 2$, gradient $= \frac{\frac{1}{2}}{2} = \frac{1}{4}$ and equation is $y = \frac{1}{4}x$ so $a = \frac{1}{4}$	B1		
		$b - \frac{1}{4}x$ passes through (4, 0) so $b = 1$	B1	(2)	
	(c)	$E(X^{2}) = \int_{0}^{2} \left(\frac{1}{4}x^{3}\right) dx + \int_{2}^{4} \left(x^{2} - \frac{1}{4}x^{3}\right) dx$	M1M1		
		$= \left[\frac{x^4}{16}\right]_0^2 + \left[\frac{x^3}{3} - \frac{x^4}{16}\right]_0^4$	A1		
		$= 1 + \frac{64 - 8}{3} - \frac{256 - 16}{16} = 4\frac{2}{3} \text{ or } \frac{14}{3}$	M1A1		
		Var(X) = E(X ²) - [E(X)] ² = $\frac{14}{3}$ - 2 ² , = $\frac{2}{3}$ (so $\sigma = \sqrt{\frac{2}{3}} = 0.816$) (*)	M1 A1cso	(7)	
	(d)	$P(X \le q) = \int_{0}^{q} \frac{1}{4}x dx = \frac{1}{4},$ $\frac{q^2}{2} = 1$ so $q = \sqrt{2} = 1.414$ awrt 1.41	M1A1,A	1 (3)	
	(e)	2- σ = 1.184 so 2 - σ , 2 + σ is wider than IQR, therefore greater than 0.5	M1,A1	(2) [15]	
	(a) (b) (c)	(a) B1 cao (b) B1 for value of a. B1 for value of b			
		2^{nd} M1 for attempt at $\int bx^2 - ax^3$ use their a and b. For attempt need to have either x^3	or x^4 . Ign	ore	
		limits 1 st A1 correct integration for both parts 3 rd M1 for use of the correct limits on each part			
		2^{nd} A1 for either getting 1 and $3\frac{2}{3}$ or awrt 3.67 somewhere or $4\frac{2}{3}$ or awrt 4.67			
		4^{th} M1 for use of $E(X^2) - [E(X)]^2$ must add both parts for $E(X^2)$ and only have subtractions	cted the		
		mean ² once. You must see this working			
	(d)	3^{rd} A1 $\sigma = \sqrt{\frac{2}{3}}$ or $\sqrt{0.66667}$ or better with no incorrect working seen.			
		M1 for attempting to find LQ, integral of either part of $f(x)$ with their 'a' and 'b' = 0.25			
		Or their F(x) = 0.25 i.e. $\frac{ax^2}{2} = 0.25$ or $bx - \frac{ax^2}{2} + 4a - 2b = 0.25$ with their a and b)		
		If they add both parts of their $F(x)$, then they will get M0.			
	(e)	1^{st} A1 for a correct equation/expression using their 'a' 2^{nd} A1 for $\sqrt{2}$ or awrt 1.41			
	(0)	M1 for a reason based on their quartiles			
		• Possible reasons are P(2 - σ < X < 2 + σ)= 0.6498 allow awrt 0.65			
		• 1.184 < LQ(1.414)			
		A1 for correct answer > 0.5			
		NB you must check the reason and award the method mark. A correct answer without a	correct		
		reason gets M0 A0			

Question Number	Scheme	Mar	ks
Q8 (a)	$X \sim \text{Po}(2)$ $P(X = 4) = \frac{e^{-2} \times 2^4}{4!} = 0.0902$ awrt 0.09	M1 A1	(2)
(b)	$Y \sim \text{Po}(8)$ $P(Y > 10) = 1 - P(Y \le 10) = 1 - 0.8159 = 0.18411$ awrt 0.184	B1 M1A1	(3)
(c)	$F = \text{no. of faults in a piece of cloth of length } x \qquad F \sim \text{Po}(x \times \frac{2}{15})$		
	$e^{\frac{2x}{15}} = 0.80$ $e^{\frac{2}{15} \times 1.65} = 0.8025, e^{\frac{2}{15} \times 1.75} = 0.791$	M1A1 M1	
(4)	These values are either side of 0.80 therefore $x = 1.7$ to 2 sf	A1	(4)
(d)	Expected number with no faults $= 1200 \times 0.8 = 960$ Expected number with some faults $= 1200 \times 0.2 = 240$	M1 A1	(4)
	So expected profit = $960 \times 0.60 - 240 \times 1.50$, = £216	M1, A1	(4) [13]
(a)	M1 for use of Po(2) may be implied A1 awrt 0.09		
(b)	B1 for Po(8) seen or used M1 for 1 - P($Y \le 10$) oe A1 awrt 0.184		
(c)	1^{st} M1 for forming a suitable Poisson distribution of the form $e^{-\lambda} = 0.8$		
	1^{st} A1 for use of lambda as $\frac{2x}{15}$ (this may appear after taking logs)		
	2 nd M1 for attempt to consider a range of values that will prove 1.7 is correct OR for use of logs to show lambda = 2 nd A1 correct solution only. Either get 1.7 from using logs or stating values either side		
S.C	for $e^{-\frac{2}{15} \times 1.7} = 0.797 \approx 0.80$ $\therefore x = 1.7$ to 2 sf allow 2 nd M1A0		
(d)	1^{st} M1 for one of the following 1200 p or 1200 (1 – p) where p = 0.8 or 2/15. 1^{st} A1 for both expected values being correct or two correct expressions. 2^{nd} M1 for an attempt to find expected profit, must consider with and without faults 2^{nd} A1 correct answer only.		