GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question	Answer	Marks	AO element	Guidance
(ii)	Diagram showing knowledge of filtration under reduced pressure Diagram showing Buchner flask must have ONE side arm AND Buchner/Hirsh funnel on top of flask Labels not required Further details: - Funnel sealed or stoppered to flask AND - Apparatus capable of filtering under reduced pressure AND - Label for setup from side arm to indicate reduced pressure AND - Label for Buchner flask OR Buchner/Hirsh funnel ALLOW slips in spelling of 'Buchner'	2	2.3	Labels NOT required for diagram ALLOW diagram of a conical flask with a filtering setup above AND Side arm either in conical flask OR between flask and filter paper of funnel IGNORE absence of seals MUST imply some type of seal between filter setup and flask. ALLOW small gaps Examples of suitable labels (may have arrow from side arm or tube attached) - to pump - to vacuum - air out - suction - reduced pressure - etc. For Buchner flask and Buchner funnel DO NOT ALLOW just 'flask OR 'funnel' Flask and funnel used in normal filtration

Quest		Answer	Marks	AO element	Guidance
(b)	(i)	Comparison of branching and points of contact e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ has longer chain / straight chain / no branches AND e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ has more points of contact/ more surface interaction (between molecules) Relative strength offorce e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ has stronger/more induced dipole(-dipole) interactions OR London forces \checkmark Hydrogen bonds $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$ have hydrogen/H bonds OR $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ has no hydrogen/H bonds \checkmark Relative strength offorce Hydrogen bonds are stronger than London forces /permanent dipole interactions Comparison of energy required to break force e.g. More energy to break/overcome London forces/intermolecular forces in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ OR More energy is needed to break H bonds (than London forces)	$\begin{gathered} 5 \rightarrow \\ 4 \text { max } \end{gathered}$	1.2	ANNOTATE WITH TICKS AND CROSSES, etc. ALLOW ORA throughout ALLOW 'The straighter the chain, the more points of contact' IGNORE comparison using 'primary', 'secondary' and 'tertiary'. Comparison of branching is required. For London forces, - ALLOW induced dipole(-dipole) interactions - IGNORE IDID OR van der Waals' forces/VDW DO NOT ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ has more electrons (number of electrons are the same) DO NOT ALLOW 'more energy to break covalent bonds ALLOW little energy is required to break London forces (compared with H bonds)

Questi		Answer	Marks	AO element	Guidance
(b)	(ii)	FIRST CHECK MOLECULAR FORMULA and STRUCTURE IF molecular formula $=\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}$ AND correct structure AND evidence of ideal gas equation $\rightarrow 6$ marks Correct up to 87 AND $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N} \rightarrow 5$ marks Correct up to $87 \rightarrow 4$ marks Rearranging ideal gas equation $n=\frac{p V}{R T} \checkmark$ Unit conversion AND substitution into $n=\frac{p V}{R T}$: - $R=8.314$ OR 8.31 - $V=72(.0) \times 10^{-6}$ - TinK: 373 K e.g. $\frac{1.00 \times 10^{5} \times 72.0 \times 10^{-6}}{8.314 \times 373} \checkmark$ Calculation of \boldsymbol{n} $n=2.32 \times 10^{-3}(\mathrm{~mol}) \checkmark$ Calculation of M $M=\frac{0.202}{2.32 \times 10^{-3}}=87$ Molecular formula $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N} \checkmark$ Molecular formula required	6	2.2×4	IF $n=\frac{p V}{R T}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation. Calculator: $n=2.321740325 \times 10^{-3}$ from 8.314 From 8.31, $n=2.322857889 \times 10^{-3}$ ALLOW elements in any order ALLOW molecular formula $=\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}_{3}$ ALLOW other molecular formulae of an amine that has $M=87$, e.g. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$

Question	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
	Structure of amine A from $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N} \checkmark$ OR OR		3.2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW structures below from molecular formula $=\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}_{3}$ ALLOW ECF but only if structure has calculated M_{r} AND has 3 peaks in ${ }^{13} \mathrm{C}$ NMR spectrum.
$\begin{aligned} & \text { Use of } \\ & 24000 \end{aligned}$	3 marks max possible for use of $72.0 \mathrm{~cm}^{3}$ OR 0.720 dm Calculation e.g. $n=\frac{72.0}{24000}=3.00 \times 10^{-3} \quad$ No mark (calcula $M=\frac{0.202}{3.00 \times 10^{-3}}=67.3$ OR $67 \quad \checkmark \quad$ ECF Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N} \quad \checkmark \quad$ ECF Structure ECF	$\overline{C F}$ mu	impler)	

Quest	Answer	Marks	AO element	Guidance
(c)	Organic product and water marked independently. 1st mark correct organic product OR water IGNORE balancing numbers 2nd mark BOTH products AND correctly balanced.	2	3.2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW NOTE: For ECF, any structure must have correct number of bonds to $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and N DO NOT ALLOW structure of dimer Question states molecular formula $=\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}$
	Total	16		

Question	Answer	Marks	AO element	Guidance
	Level 1 (1-2 marks) Explanation of some terms: ligand, coordination number and ligand substitution with some errors or omissions. AND A suitable example of a complex ion OR Ligand substitution illustrated with an equation with some errors There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			
	Total	6		

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& Marks \& AO element \& Guidance \\
\hline 3 \& (a) \& (i) \& \begin{tabular}{l}
FIRST, CHECK THE ANSWER ON ANSWER LINE IF \(\Delta_{\mathrm{c}} \mathrm{H}^{\mathbf{C}}=\mathbf{- 1 8 6 0}\) OR - \(1850\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\) with evidence of working, award 3 marks \\
IF \(\Delta_{\mathrm{c}} H=-1862\), award 2 marks (not 3 SF) \\
Energy released in J OR kJ
\[
=100 \times 4.18 \times 24.5= \pm 10241(\mathrm{~J}) \mathrm{OR} \pm 10.241(\mathrm{~kJ}) \checkmark
\]
\[
3 \text { SF minimum required }
\] \\
Calculates \(n\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)\)
\[
=\frac{0.242}{44(.0)}=0.0055(0)(\mathrm{mol})
\] \\
Calculates \(\Delta_{c} H\) with - sign AND 3 SF (appropriate)
\[
\begin{aligned}
\Delta_{\mathrm{c}} H= \& \frac{10241}{0.0055 \times 1000}=-1862 \quad \text { No mark } \\
= \& -1860 \text { OR }-1.86 \times 10^{3}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark} \\
\& - \text { sign AND } 3 \text { SF required }
\end{aligned}
\]
\end{tabular} \& 3 \& 2.4
2.4

2.8 \& | FULL ANNOTATIONS MUST BE USED |
| :--- |
| ALLOW ECF throughout |
| DO NOT ALLOW $c=4.2 \rightarrow 10290$ |
| Next 2 marks available by ECF $\rightarrow-1870$ |
| ALLOW 10240/10200 J OR 10.24/10.2 kJ IGNORE units |
| ALLOW ECF from initial 3 SF rounding to 10.2 kJ : $\pm \frac{10200}{0.0055 \times 1000} \rightarrow \pm 1854.545455 \checkmark \rightarrow 1850 \checkmark$ |
| Common errors |
| $\Delta H=-54.6$ OR-54.7 2 marks by ECF from $m c \Delta T$ m wrong as 0.242 and ΔT wrong as 297.5 K) $\rightarrow m c \Delta T$ wrong as 300.9391 (J) $\begin{aligned} \Delta H= & -4.51 \quad 2 \text { marks by ECF from } m c \Delta T \\ & m \text { wrong as } 0.242 \text { and } \Delta T \text { correct as } 24.5) \\ & \rightarrow m c \Delta T \text { wrong as } 24.7832(\mathrm{~J}) \\ \Delta H= & \mathbf{- 2 2 6 0 0} \quad 2 \text { marks by ECF from } m c \Delta T \\ & m \text { correct as } 100 \text { and } \Delta T \text { wrong as } 297.5) \\ & \rightarrow m c \Delta T \text { wrong as } 124355(\mathrm{~J}) \end{aligned}$ |

\hline \& (a) \& (ii) \& | Any two from: |
| :--- |
| 1 MARK ONLY \checkmark |
| - Heat loss/released to surroundings |
| - Incomplete combustion/reaction with oxygen or air OR not everything burns |
| - Evaporation of water | \& 1 \& 1.2 \& | IGNORE incomplete 'reaction' |
| :--- |
| Needs link to combustion/burning/reaction with air/O2 |
| IGNORE evaporation of $\mathrm{C}_{3} \mathrm{H}_{8}$ |

\hline
\end{tabular}

Question	Answer	Marks	AO element	Guidance
(b)*	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Calculates $\Delta_{\mathrm{r}} H$ for reaction 3.1 correctly with correct sign AND Calculates a value for $\Delta_{c} H^{\circ}$ of propane using $\Delta \mathrm{r} H$ AND $\pm 4 \times \Delta_{\mathrm{vap}} H$ There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculates $\Delta_{\mathrm{r}} H$ for reaction 3.1 correctly with correct sign OR Calculates bonds broken OR bonds made correctly to obtain a value of $\Delta_{\mathrm{r}} H$ for reaction 3.1 AND attempts to link $\Delta_{r} H$ with $\Delta_{\text {vap }} H$ OR calculates $4 \times \Delta_{\text {vap }} H$ There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Uses bond enthalpies for bonds broken and bonds made but may contain errors or omissions AND obtains a value for $\Delta_{r} H$. OR Calculates bonds broken OR bonds made correctly. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & \hline 2.4 \times 2 \\ & 3.1 \times 2 \\ & 3.2 \times 2 \end{aligned}$	Indicative scientific points may include: Bond enthalpy calculation of $\Delta_{r} \underline{H}$ Bonds broken $\begin{aligned} = & (2 \times 347)+(8 \times 413)+(5 \times 498) \\ =(694)+(3304) & +(2490) \\ & = \pm 6488 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ Bonds made $\begin{aligned} & =(6 \times 805)+(8 \times 464) \\ & =(4830)+(3712)= \pm 8542 \mathrm{~kJ} \mathrm{~mol}^{-1}+\left(\begin{array}{l} \text { (} \end{array}=-2054 \mathrm{~kJ} \mathrm{~mol}^{-1}\right. \end{aligned}$ NOTE: $3 \mathrm{C}-\mathrm{C} \rightarrow 6835$ for bond broken: $\Delta H=-1707$ 2 C-C omitted from bonds broken gives: $\Delta H=-2748$ Determination of $\Delta_{c} H\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ $\Delta_{c} H^{\circ}$ of propane using $\Delta_{r} H$ AND $\pm 4 \times \Delta_{\mathrm{vap}} H$ Correct $\begin{aligned} \Delta_{\mathrm{c}} H\left(\mathrm{C}_{3} \mathrm{H}_{8}\right) & =\Delta_{\mathrm{r}} H-4 \times \Delta_{\mathrm{vap}} H \\ & =-2054-(4 \times 40.65) \\ & =-2054-162.6 \\ & =-2216.6 /-2217 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ Incorrect $\begin{aligned} \Delta_{\mathrm{c}} H\left(\mathrm{C}_{3} \mathrm{H}_{8}\right) & =-2054+(4 \times 40.65) \\ & =-2054+162.6 \\ & =-1891.4 /-1891 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ NOTE: A clear and logically structured response would include a correct energy cycle for $\Delta_{c} H\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ using $\Delta r H$ AND $4 \times \Delta$ vap H in energy cycle or expression: ALLOW trailing zeroes OR minor slips
	Total	10		

Question			Answer	Marks	AO element	Guidance
4	(a)	(i)	Overall equation AND state symbols: $\mathbf{M}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathbf{M C l}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \checkmark$ STATE SYMBOLS required in overall equation ONLY Half equations: Oxidation $\mathbf{M} \rightarrow \mathbf{M}^{2+}+2 \mathrm{e}^{-} \checkmark$ Reduction $\begin{aligned} & 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \\ & \mathrm{ORH}^{+}+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2} \checkmark \end{aligned}$	3	2.6×3	All 3 marks are independent. IGNORE charges/oxidation numbers shown around overall equation. Treat as rough working ALLOW overall equation shown with some or all ions that are present e.g. (with state symbols) $\begin{aligned} & \mathrm{M}+2 \mathrm{H}^{+} \rightarrow \mathrm{M}^{2+}+\mathrm{H}_{2} \\ & \mathrm{M}+2 \mathrm{HCl}^{2} \rightarrow \mathrm{M}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{H}_{2} \\ & \mathrm{M}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{M}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{H}_{2} \end{aligned}$ In half equations, IGNORE state symbols even is wrong BUT half equations MUST only have species that change. For charges on half equations, ALLOW $\quad \mathrm{M}^{+2}$ for $\mathrm{M}^{2+} \mathrm{OR} \quad \mathrm{H}^{+1}$ for H^{+} ALLOW $\quad \mathbf{M}-2 \mathbf{e}^{-} \rightarrow \mathbf{M}^{2+}$ If BOTH half equations are correct but shown with oxidation and reduction the wrong way around, award 1 mark from the 2 marks for half equations
	(a)	(ii)	Bubbles/effervescence/fizzing stops \checkmark M/metal/solid has disappeared/dissolved	2	3.3×2	Responses must imply that all fizzing has stopped and that all the solid has dissolved i.e. 'metal disappears' is not quite enough. 'All the metal disappears' is enough IGNORE constant mass IGNORE no increase in temperature
	(a)	(iii)	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$	1	2.5	ALLOW multiples $\text { e.g. } 2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols, even if wrong

Question		Answer	Marks	AO element	Guidance
(a)	(iv)		6	2.8×5 3.2	FULL ANNOTATIONS MUST BE USED Common error: Incorrect mean from all 3 titres $=27.35 \mathrm{~cm}^{3}$ Use ECF throughout Intermediate values for working to at least 3 SF. TAKE CARE: Value written down may be truncated calculator value. Depending on rounding, either can be credited. ALLOW 0.123 (mol) i.e. 3SF ALLOW 0.0615 (mol) IF 0.1228 rounded to 0.123 ALLOW 112.2 from 0.0615 AND Cd ALLOW A_{r} to nearest whole number ALLOW ECF for metal closest to calculated A_{r} DO NOT ALLOW Ga OR Sc (Form 3+ ions only)
		COMMON ERRORS: Mean of 27.35 (use of all 3 titres) $\begin{aligned} & \rightarrow 8.752 \times 10^{-3} \rightarrow 8.752 \times 10^{-2} \rightarrow 0.12248 \\ & \rightarrow 0.06124 \rightarrow 112.7 \text { AND Cd: } \quad 5 \text { marks } \end{aligned}$ No $\div 2$ to obtain n(M) \rightarrow 56.2 AND Fe (from 27.25) 5 marks \rightarrow 56.3 AND Fe (from 27.35) 4 marks No subtraction from 0.210 $\begin{aligned} & \rightarrow 8.72 \times 10^{-2} / 2 \rightarrow 4.36 \times 10^{-2} \rightarrow \frac{6.90}{4.36 \times 10^{-2}} \\ & \rightarrow 158.2 \text { to } 158.3 \text { AND Tb } \quad 5 \text { marks } \\ & \hline \end{aligned}$	No $\times 10$ No $\times 10$ 0. A_{r} Omitting 0.2	o obtain n 210-8.72 $(M)=0.20$ = 6.90/0. and no $\div 2$ 210-8.72 = 6.9/0.201 initial titra $210 / 2=0$	$\mathrm{HCl})$ in $250 \mathrm{~cm}^{3}$ 5 marks $\times 10^{-3}=0.20128$ OR 0.201 $28 / 2=0.10064$ $064=68.56 \rightarrow \mathrm{Zn}$ 4 marks $10^{-3}=0.20128$ $28=34.28 \rightarrow \mathrm{Ca}$ ion calculation Zero marks $5 \rightarrow 6.9 / 0.105=65.71 \rightarrow$ Zn

Question		Answer	Marks	AO element	Guidance
(b)	(i)	$n\left(\mathrm{CO}_{2}\right)=\frac{2.75}{44}=0.0625(\mathrm{~mol}) \checkmark$	1	2.8	
(b)	(ii)	$n\left(\mathbf{X}_{2} \mathrm{CO}_{3}\right)=0.0625(\mathrm{~mol})$ OR 0.0625 used in molar mass expression below \checkmark $\begin{array}{ll} \text { Molar mass of } \mathbf{X}_{2} \mathrm{CO}_{3} & =\frac{14.57}{0.0625}=233.12\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\checkmark} \\ \text { Metal } \mathbf{X} & =\text { Rubidium } / \mathrm{Rb} \end{array}$	3	$\begin{aligned} & 1.2 \\ & 2.8 \\ & 3.2 \end{aligned}$	ALLOW ECF from 4b(i) ALLOW to nearest whole number DO NOT ALLOW strontium/Sr wrong carbonate formula ALLOW ECF for \mathbf{X} from calculated molar mass ONLY IF \mathbf{X} is a Group 1 metal $\mathbf{O R ~ A g}$ Working: $\begin{aligned} & \text { Mass of } \mathbf{X} \text { in } \mathbf{X}_{2} \mathrm{CO}_{3}=233.14-60 \\ &=173.12 \text { OR } 173 \\ & \text { Ar of } \mathbf{X}=\frac{173.12}{2} \text { OR } 86.56 \text { OR 85.6 OR } 87 \end{aligned}$
(c)	(i)	Reweigh to constant mass \checkmark	1	3.4	ALLOW response implying leaving for longer and monitoring by reweighing to constant mass, e.g. Leave flask until the mass does not change IGNORE 'leave for longer' OR wait till fizzing stops Needs link to constant mass ALLOW Collect gas until gas volume is constant
(c)	(ii)	Mass (CO_{2}) OR $n\left(\mathrm{CO}_{2}\right)$ loss would be smaller OR Mass $\mathrm{X}_{2} \mathrm{CO}_{3}$ OR $n\left(\mathrm{X}_{2} \mathrm{CO}_{3}\right)$ reacted (seems to be) less \checkmark Molar mass would be greater \checkmark	2	$\begin{aligned} & 3.1 \\ & 3.2 \\ & \hline \end{aligned}$	
		Total	19		

Quest	Answer	Marks	AO element	Guidance
(c)	Plotting of graph All points correctly plotted AND best-fit straight line \checkmark Gradient Correct gradient of best-fit straight line within the range $\pm 57000 \rightarrow \pm 63000 \checkmark$ ΔH calculation (subsumes mark for gradient) $\Delta H=(-)$ gradient $\times 8.31(4)$ OR calculated value \checkmark e.g. from $\pm 60000, \Delta H=(+) 498840(J) \mathbf{O R} \pm 498.840(\mathrm{~kJ})$ $\Delta H_{\text {in }} \mathrm{kJ} \mathrm{mol}^{-1}$ ΔH correct in $\mathrm{kJ} \mathrm{mol}^{-1}$ AND 3SF AND - sign \checkmark e.g. from $\pm 498840, \Delta H=-499\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	4	3.1 3.1 3.2 3.2	 ALLOW 4 points on graph Tolerance 1 small square ALLOW ΔH in range: $-480 \rightarrow-530\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ This mark subsumes gradient mark
(d)	Extrapolate line to (y) intercept OR Measure/Use (y) intercept \checkmark Intercept $=\frac{\Delta S}{R}$ OR $\Delta S=R \times(y)$ intercept \checkmark This statement automatically subsumes 1 st mark NOTE: If ' x ' intercept, DO NOT ALLOW 1st mark but 2nd mark available for $\times R$ as BOD	2	3.1×2	ALLOW substitute values of $\ln K_{\mathrm{p}}, 1 / T$ and gradient into Equation 5.1 $\begin{aligned} & \text { From provided values and gradient }=60000: \\ & \frac{\Delta S}{R}=\quad \text { In } K_{p}-\text { gradient } \times 1 / T \\ & \text { OR } \end{aligned}$
	Total	9		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

