

GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations

Annotation	Meaning
	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question	Answer	Marks	AO element	Guidance
1 (a) (i)	Water out -	2	1.2 × 2	
	Pear-shaped / Round-bottom flask Water flow AND condenser Water flow AND condenser Water in at bottom and out at top AND condenser ✓ Flask and technique Pear-shaped/round-bottom flask AND reflux ✓			DO NOT ALLOW conical flask, volumetric flask, beaker in place of round bottom/pear shaped flask

Question	Answer	Marks	AO element	Guidance
(ii)	Diagram showing knowledge of filtration under reduced pressure Diagram showing Buchner flask must have <u>ONE</u> side arm AND Buchner/Hirsh funnel on top of flask ✓ Labels not required	2	2.3	Labels NOT required for diagram ALLOW diagram of a conical flask with a filtering setup above AND Side arm either in conical flask OR between flask and filter paper of funnel IGNORE absence of seals
	 Further details: Funnel sealed or stoppered to flask AND Apparatus capable of filtering under reduced pressure AND Label for setup from side arm to indicate reduced pressure AND Label for Buchner flask OR Buchner/Hirsh funnel ✓ ALLOW slips in spelling of 'Buchner' 		2.7	 MUST imply some type of seal between filter setup and flask. ALLOW small gaps Examples of suitable labels (may have arrow from side arm or tube attached) to pump to vacuum air out suction reduced pressure etc. For Buchner flask and Buchner funnel DO NOT ALLOW just 'flask OR 'funnel' Flask and funnel used in normal filtration

Question	Answer	Marks	AO element	Guidance
(b) (i)	Comparison of branching and points of contact e.g. CH ₃ CH ₂ CH ₂ NH ₂ has longer chain / straight chain / no branches AND e.g. CH ₃ CH ₂ CH ₂ NH ₂ has more points of contact / more surface interaction (between molecules) ✓ Relative strength of force e.g. CH ₃ CH ₂ CH ₂ NH ₂ has stronger/more induced dipole(-dipole) interactions OR London forces ✓ Hydrogen bonds CH ₃ CH ₂ CH ₂ NH ₂ OR (CH ₃) ₂ CHNH ₂ have hydrogen/H bonds OR (CH ₃) ₃ N has no hydrogen/H bonds ✓	5→ 4 max	1.2	ANNOTATE WITH TICKS AND CROSSES, etc. ALLOW ORA throughout ALLOW 'The straighter the chain, the more points of contact' IGNORE comparison using 'primary', 'secondary' and 'tertiary'. <i>Comparison of branching is required</i> . For London forces, • ALLOW induced dipole(–dipole) interactions • IGNORE IDID OR van der Waals' forces/VDW DO NOT ALLOW CH ₃ CH ₂ CH ₂ NH ₂ has more electrons (number of electrons are the same)
	 Relative strength of force Hydrogen bonds are stronger than London forces /permanent dipole interactions ✓ Comparison of energy required to break force e.g. More energy to break/overcome London forces/intermolecular forces in CH₃CH₂CH₂NH₂ OR More energy is needed to break H bonds (than London forces) ✓ 		1.2	DO NOT ALLOW 'more energy to break covalent bonds ALLOW little energy is required to break London forces (compared with H bonds)

Oct 2020

Question	Answer	Marks	AO element	Guidance
(b) (ii)	FIRST CHECK MOLECULAR FORMULA and STRUCTUREIF molecular formula = $C_5H_{13}N$ AND correct structureAND evidence of ideal gas equation \rightarrow 6 marks Correct up to 87 AND $C_5H_{13}N$ \rightarrow 5 marks Correct up to 87 \rightarrow 4 marks	6		
	Rearranging ideal gas equation $n = \frac{pV}{RT} \checkmark$ Unit conversion AND substitution into $n = \frac{pV}{RT}$:		2.2×4	IF $n = \frac{pV}{RT}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation.
	• $R = 8.314 \text{ OR } 8.31$ • $V = 72(.0) \times 10^{-6}$ • $T \text{ in } K: \qquad 373 \text{ K}$ e.g. $\frac{1.00 \times 10^5 \times 72.0 \times 10^{-6}}{8.314 \times 373} \checkmark$			
	Calculation of n $n = 2.32 \times 10^{-3} \text{ (mol) } \checkmark$ Calculation of M $M = \frac{0.202}{2.32 \times 10^{-3}} = 87 \checkmark$			Calculator: $n = 2.321740325 \times 10^{-3}$ from 8.314 From 8.31, $n = 2.322857889 \times 10^{-3}$
	<i>Molecular formula</i> C₅H ₁₃ N ✓ Molecular formula required		3.2	ALLOW elements in any order ALLOW molecular formula = $C_3H_9N_3$ ALLOW other molecular formulae of an amine that has $M = 87$, e.g. C_4H_9NO

Mark Scheme

H432/03

Question	Answer	Marks	AO element	Guidance
(c)	$HN - C + H_2O + H_2O $ $HN - C + H_2O $ $HN - C + H_2O $ $Organic product and water marked independently.$ $Ist mark correct organic product OR water $ $IST mark correct organic product OR water $ $IGNORE \text{ balancing numbers}$ $2nd mark BOTH \text{ products AND correctly balanced.}$	2	3.2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW H NO H^2 C C C C C C C C C C
	Total	16		

Question	Answer	Marks	AO element	Guidance
2*	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Comprehensive explanation of the terms, ligand and coordination number and ligand substitution AND 3D diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes AND Ligand substitution illustrated with a balanced equation There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Explanation of the terms, ligand and coordination number and ligand substitution with some errors or omissions AND: Diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes OR A 3D wedged diagram of a suitable example of 6 OR 4 coordination OR A diagram of a suitable example of 6 OR 4 coordination AND ligand substitution illustrated with an equation OR Ligand substitution illustrated with a balanced equation There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence	6	1.1×4 2.1×2	 Indicative scientific points may include: <u>Terms</u> Ligand: Donates a lone pair to metal ion Forms dative covalent (coordinate) bond with metal ion Coordination number: Number of coordinate bonds to metal ion. Could be implicit in annotated diagrams NOTE: For monodentate ligands, 'number of ligands' is the same as the number of coordination number Ligand substitution: One ligand replacing another <u>Suitable examples of complex ions with different shapes</u> Coordination no 6 Octahedral e.g. [Cu(H₂O)₈]²⁺, [Fe(H₂O)₈]³⁺ Coordination no 4 Tetrahedral e.g. [Cu(H₂O)₈]²⁺, [Fe(H₂O)₈]³⁺ Coordination no 4 Tetrahedral e.g. CuCl₄²⁻, CoCl₄²⁻ OR Square planar Pt complexes, e.g. Pt(NH₃)₂Cl₂ <u>Diagrams and equations</u> Diagrams of complex ions (may be 3D) Equation for ligand substitution e.g. [Cu(H₂O)₈]²⁺ + 4Cl⁻ → CuCl₄²⁻ + 6H₂O [Cu(H₂O)₈]²⁺ + 4NH₃ → [Cu(NH₃)₄(H₂O)₂]²⁺ + 4H₂O NOTE: A clear and logically structured response would link shapes with some of: coordination number, names of shapes, connectivity, involvement of lone pairs, bond angles, etc. (not inclusive) ALLOW minor slips NOTE: Levels and the mark within a level is a 'best-fit', not perfection

Q	uestion	Answer	Marks	AO element	Guidance
		 Level 1 (1-2 marks) Explanation of some terms: ligand, coordination number and ligand substitution with some errors or omissions. AND A suitable example of a complex ion OR Ligand substitution illustrated with an equation with some errors There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit. 			
		Total	6		

Q	Question		Answer	Marks	AO element	Guidance
3	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta_c H = -1860 \text{ OR} -1850 \text{ (kJ mol}^{-1)}$ with evidence of working, award 3 marks IF $\Delta_c H = -1862$, award 2 marks (not 3 SF) Energy released in J OR kJ $= 100 \times 4.18 \times 24.5 = \pm 10241 \text{ (J) OR} \pm 10.241 \text{ (kJ)} \checkmark$ 3 SF minimum required Calculates $n(C_3H_8)$ $= \frac{0.242}{44(.0)} = 0.0055(0) \text{ (mol)} \checkmark$ Calculates $\Delta_c H$ with $- \text{sign AND 3 SF}$ (appropriate) $\Delta_c H = \frac{10241}{0.0055 \times 1000} = -1862 \text{ No mark}$ $= -1860 \text{ OR} - 1.86 \times 10^3 \text{ (kJ mol}^{-1}) \checkmark$ - sign AND 3 SF required	3	2.4 2.4 2.8	FULL ANNOTATIONS MUST BE USEDALLOW ECF throughoutDO NOT ALLOW $c = 4.2 \rightarrow 10290$ Next 2 marks available by ECF $\rightarrow -1870$ ALLOW 10240/10200 J OR 10.24/10.2 kJIGNORE unitsALLOW ECF from initial 3 SF rounding to 10.2 kJ: $\frac{10200}{0.0055 \times 1000} \rightarrow \pm 1854.545455 \checkmark \rightarrow 1850 \checkmark$ Common errors $\Delta H = -54.6 \text{ OR} -54.7 2 \text{ marks by ECF from mc\DeltaT}$ m wrong as 0.242 and ΔT wrong as 297.5 K) $\rightarrow mc\Delta T$ wrong as 300.9391 (J) $\Delta H = -4.51 2 \text{ marks by ECF from mc\DeltaT}$ m wrong as 0.242 and ΔT correct as 24.5) $\rightarrow mc\Delta T$ wrong as 24.78322 (J) $\Delta H = -22600 2 \text{ marks by ECF from mc\DeltaT}$ $m c\Delta T$ wrong as 24.78322 (J) $\Delta H = -22600 2 \text{ marks by ECF from mc\DeltaT}$ $m c\Delta T$ wrong as 24.78322 (J)
	(a)	(ii)	 Any two from: 1 MARK ONLY ✓ Heat loss/released to surroundings Incomplete combustion/reaction with oxygen or air OR not everything burns Evaporation of water 	1	1.2	IGNORE incomplete 'reaction' Needs link to combustion/burning/reaction with air/O2 IGNORE evaporation of C3H8

(b)*			element	Galdance
	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Calculates $\Delta_r H$ for reaction 3.1 correctly with correct sign AND Calculates a value for $\Delta_c H^{\bullet}$ of propane using $\Delta_r H$ AND $\pm 4 \times \Delta_{vap} H$ There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculates $\Delta_r H$ for reaction 3.1 correctly with correct sign OR Calculates bonds broken OR bonds made correctly to obtain a value of $\Delta_r H$ for reaction 3.1 AND attempts to link $\Delta_r H$ with $\Delta_{vap} H$ OR calculates $4 \times \Delta_{vap} H$ There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Uses bond enthalpies for bonds broken and bonds made but may contain errors or omissions AND obtains a value for $\Delta_r H$. OR Calculates bonds broken OR bonds made correctly. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6	2.4×2 3.1×2 3.2×2	Indicative scientific points may include: Bond enthalpy calculation of $\Delta_r H$ Bonds broken = (2 × 347) + (8 × 413) + (5 × 498) = (694) + (3304) + (2490) = ± 6488 kJ mol ⁻¹ Bonds made = (6 × 805) + (8 × 464) = (4830) + (3712) = ± 8542 kJ mol ⁻¹ $\Delta_r H$ = 6488 - 8542 = -2054 kJ mol ⁻¹ NOTE: 3 C-C \rightarrow 6835 for bond broken: ΔH = -1707 2 C-C omitted from bonds broken gives: ΔH = -2748 Determination of $\Delta_c H(C_3H_8)$ $\Delta_c H^{\circ}$ of propane using $\Delta_r H$ AND ± 4 × $\Delta_{vap} H$ Correct $\Delta_c H(C_3H_8) = \Delta_r H - 4 × \Delta_{vap} H$ = -2054 - (4 × 40.65) = -2054 - 162.6 = -2054 + 162.6 = -2054 + 162.6 = -1891.4 / -1891 kJ mol ⁻¹ NOTE: A clear and logically structured response would include a correct energy cycle for $\Delta_c H(C_3H_8)$ $using \Delta_r H$ AND 4 × $\Delta_{vap} H$ in energy cycle or expression:
	Total	10		ALLOW trailing zeroes OR minor slips

Oct 2020

Q	Question		Answer	Marks	AO element	Guidance
4	(a)	(i)	AnswerOverall equation AND state symbols: $M(s) + 2HCl(aq) \rightarrow MCl_2(aq) + H_2(g) \checkmark$ STATE SYMBOLS required in overall equation ONLYHalf equations: Oxidation $M \rightarrow M^{2+} + 2e^- \checkmark$ Reduction $2H^+ + 2e^- \rightarrow H_2$ $OR H^+ + e^- \rightarrow \frac{1}{2}H_2 \checkmark$	3	element 2.6×3	All 3 marks are independent.IGNORE charges/oxidation numbers shown around overall equation.ALLOW overall equation shown with some or all ions that are presente.g. (with state symbols) $M + 2H^+ \rightarrow M^{2+} + H_2$
	(a)	(ii)	Bubbles/effervescenœ/fizzing stops ✓ M/metal/solid has disappeared/dissolved ✓	2	3.3×2	oxidation and reduction the wrong way around, award 1 mark from the 2 marks for half equations Responses must imply that all fizzing has stopped and that all the solid has dissolved i.e. 'metal disappears' is not quite enough.
	(a)	(iii)	$H^+ + OH^- \rightarrow H_2O \checkmark$	1	2.5	'All the metal disappears' is enough IGNORE constant mass IGNORE no increase in temperature ALLOW multiples e.g. $2H^+ + 2OH^- \rightarrow 2H_2O$
						GNORE state symbols, even if wrong

Questior	n	Answer	Marks	AO element	Guidance
(a) ((iv)	Mean titre 1 mark	6		FULL ANNOTATIONS MUST BE USED
		$= \frac{(27.30 + 27.20)}{2} = 27.25 \text{ (cm}^{3}) \checkmark$ Analysis of results 5 marks $n(\text{NaOH}) = 27.25 \times \frac{0.320}{1000} = 8.72 \times 10^{-3} \text{ (mol)} \checkmark$		2.8×5	Common error: Incorrect mean from all 3 titres = 27.35 cm ³ Use ECF throughout
		$n(\text{HCI}) \text{ in } 25.0 \text{ cm}^3 = n(\text{NaOH})$ $n(\text{HCI}) \text{ in } 250 \text{ cm}^3$ $= 8.72 \times 10^{-3} \times 10 = 8.72 \times 10^{-2} \text{ (mol)} \checkmark$ $n(\text{HCI}) \text{ that reacted with } \mathbf{M}$ $= 0.210 - 8.72 \times 10^{-2} = 0.1228 \text{ (mol)} \checkmark$ $n(\mathbf{M}) \text{ that reacted} = \frac{0.1228}{2} = 0.0614 \text{ (mol)} \checkmark$ $A_r \text{ of } \mathbf{M} = \frac{6.90}{0.0614} = 112.4 \text{ AND } \mathbf{M} = \text{ cadmium/Cd} \checkmark$		3.2	Intermediate values for working to at least 3 SF . TAKE CARE : Value written down may be truncated calculator value. Depending on rounding, either can be credited. ALLOW 0.123 (mol) i.e. 3SF ALLOW 0.0615 (mol) IF 0.1228 rounded to 0.123 ALLOW 112.2 from 0.0615 AND Cd ALLOW <i>A</i> _r to nearest whole number ALLOW ECF for metal closest to calculated <i>A</i> _r
					DO NOT ALLOW Ga OR Sc (Form 3+ ions only)
		COMMON ERRORS: Mean of 27.35 (use of all 3 titres) $\rightarrow 8.752 \times 10^{-3} \rightarrow 8.752 \times 10^{-2} \rightarrow 0.12248$ $\rightarrow 0.06124 \rightarrow 112.7$ AND Cd: 5 marks No ÷2 to obtain n(M) $\rightarrow 56.2$ AND Fe (from 27.25) 5 marks	No ×10 0. n(A No ×10	to obtain $n_{(210-8.72)}$ (M) = 0.201 = 6.90/0.1 and no ÷ 2	$(HCl) in 250 cm^3$ 5 marks $\times 10^{-3} = 0.20128 \text{ OR } 0.201$ 28/2 = 0.10064 $0064 = 68.56 \rightarrow Zn$ 4 marks
		→ 56.3 AND Fe (from 27.35) 4 marks No subtraction from 0.210 → $8.72 \times 10^{-2}/2 \rightarrow 4.36 \times 10^{-2} \rightarrow \frac{6.90}{4.36 \times 10^{-2}}$ → 158.2 to 158.3 AND Tb 5 marks	0. A Omittin 0.	.210 – 8.72 r = 6.9/0.20 g initial titra .210/2 = 0.1	× $10^{-3} = 0.20128$ 128 = 34.28 → Ca tion calculation Zero marks 05 → 6.9/0.105 = 65.71 → Zn

Questi	ion	Answer		AO element	Guidance
(b)	(i)	$n(CO_2) = \frac{2.75}{44} = 0.0625 \text{ (mol)} \checkmark$	1	2.8	
(b)	(ii)	<i>n</i> (X ₂ CO ₃) = 0.0625 (mol) OR	3		ALLOW ECF from 4b(i)
		0.0625 used in molar mass expression below \checkmark		1.2	
		Molar mass of X ₂ CO ₃ = $\frac{14.57}{0.0625}$ = 233.12 (g mol ⁻¹) ✓		2.8	ALLOW to nearest whole number
		Metal X = Rubidium/Rb ✓		3.2	DO NOT ALLOW strontium/Sr wrong carbonate formula
					ALLOW ECF for X from calculated molar mass ONLY IF X is a Group 1 metal OR Ag
					Working: Mass of X in X ₂ CO ₃ = 233.14 – 60 = 173.12 OR 173
					$A_{\rm r}$ of $\mathbf{X} = \frac{173.12}{2}$ OR 86.56 OR 85.6 OR 87
(c)	(i)	Reweigh to constant mass ✓	1	3.4	ALLOW response implying leaving for longer and monitoring by reweighing to constant mass, e.g. Leave flask until the mass does not change
					IGNORE 'leave for longer' OR wait till fizzing stops <i>Needs link to constant mass</i>
					ALLOW Collect gas until gas volume is constant
(c)	(ii)	Mass (CO ₂) OR <i>n</i> (CO ₂) loss would be smaller OR	2		
		Mass X ₂ CO ₃ OR n (X ₂ CO ₃) reacted (seems to be) less \checkmark		3.1	
		Molar mass would be greater \checkmark		3.2	
		Total	19		

Question		Answer					Marks	AO element	Guidance		
5	(a)		T/K Kp	500 5 86 × 10 ⁴⁵	600 1 83 × 10 ³⁷	700 1 46 × 10 ³¹	800 1 14 × 10 ²⁶		2	1.2×2	Mark by row
			$\frac{\frac{1}{T}}{/K^{-1}}$	2.00×10^{-3}	1.67 × 10 ⁻³	1.43 × 10 ⁻³	1.25 × 10 ⁻³	~			ALLOW 2 SF or more for 1/ <i>T</i> but ignore trailing zeroes
			In K _P	105	86	72	60	✓			ALLOW whole numbers (± 1) for ln K_p
			<i>Calculat</i> 1/ <i>T</i> /10 ⁻³ In <i>К</i> р	tor values 2.00 105.3844788	1.66 recurring 85.79996441	1.428571429 71.75857432	1.25 59.99824068				ALLOW 1 small slip in each row. e.g. 1.66 for 1.67; 71.7 for 71.8 <i>Check with calculator values below table</i> BUT DO NOT ALLOW whole number errors, e.g. 85 for 86 ⊠
	(b)		Equilibr AND (forwar	ium (position d) reaction is) shifts to the exothermic ∽	left ⁄			1	2.2	ALLOW 'favours reverse reaction' Implies shift to left ALLOW 'shifts in endothermic direction' BUT only if (forward) reaction stated as exothermic

Mark Scheme

Oct 2020

Question	Answer	Marks	AO element	Guidance
(c)	Plotting of graph <u>All</u> points correctly plotted AND best-fit straight line ✓	4	3.1	140.00 y = 59385x - 13.537 130.00 120.00 100.00 90.00
	Gradient Correct gradient of best-fit straight line within the range $\pm 57000 \rightarrow \pm 63000 \checkmark$ ΔH calculation (subsumes mark for gradient) $\Delta H = (-)$ gradient $\times 8.31(4)$ OR calculated value \checkmark e.g. from ± 60000 , $\Delta H = (+)498840$ (J) OR ± 498.840 (kJ) ΔH in kJ mol ⁻¹ ΔH correct in kJ mol ⁻¹ AND 3SF AND - sign \checkmark e.g. from ± 498840 , $\Delta H = -499$ (kJ mol ⁻¹)		3.1 3.2 3.2	80.00 70.00 60.00 50.00 40.00 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 ALLOW 4 points on graph Tolerance 1 small square ALLOW Δ <i>H</i> in range: -480 → -530 (<i>kJ mol</i> ⁻¹) This mark subsumes gradient mark
(d)	Extrapolate line to (y) intercept OR Measure/Use (y) intercept \checkmark Intercept = $\frac{\Delta S}{R}$ OR $\Delta S = R \times (y)$ intercept \checkmark <i>This statement automatically subsumes 1st mark</i> NOTE : If 'x' intercept, DO NOT ALLOW 1st mark but 2nd mark available for $\times R$ as BOD	2	3.1×2	ALLOW substitute values of ln K_p , 1/T and gradient into Equation 5.1 \checkmark From provided values and gradient = 60000: $\frac{\Delta S}{R}$ = ln K_p – gradient × 1/T OR 135 – 60000 × 2.50 × 10 ⁻³ = -15 \checkmark
	Total	9		

Question	Answer			Marks	AO element	Guidance
6 (a)	Bond angle 120(°) 104–105(°)	Name of shape Trigonal planar Non-linear	-	2	1.2×2	For non-linear,
	Mark by row O i.e. 2 bond a 2 shapes OR i.e. bond and bond and	R by column to give his ngles correct ✓ s correct ✓ gle AND shape correct gle AND shape correct	gher mark in 1st row ✓ in 2nd row ✓			IGNORE planar, 'not straight'
(b)	CH ₃ SO ₂ OH + H ₂ O A1 B2 For an equilibrium sl H ₂ O, mark acid–base CH ₃ SO ₂ OH + CH ₃ CO A1 B2 CH ₃ SO ₂ OH + CH ₃ CO A1 B2 CH ₃ SO ₂ OH dissocia OR CH ₃ SO ₂ OH dissocia OR CH ₃ SO ₂ OH dissocia ORA in terms of CH ₃ Student is correct AND (sulfonic acid has) lo ORA ✓	 ⇒ CH₃SO₂O⁻ + H₃O⁺ B1 A2 nown using CH₃COOH e pairs by ECF, i.e. OH ⇒CH₃SO₂O⁻ + CH B1 tes more (than CH₃CO stronger acid ✓ aCOOH being a weake wer pK_a/higher K_a OR 	✓ ✓ Instead of 3COOH2 ⁺ ⊠ A2 ECF ✓ OH) er acid greater [H ⁺]	4	2.1×2 3.1 3.2	ALLOW → for ⇒ ALLOW acid-base pairs labelled other way round. i.e. CH ₃ SO ₂ OH + H ₂ O ⇒ CH ₃ SO ₂ O ⁻ + H ₃ O ⁺ A2 B1 B2 A1 ALLOW small slip If ONE charge is missing from equilibrium. ALLOW ECF for acid-base pairs mark IGNORE 'more acidic' <i>Response needs strength/dissociation</i> ALLOW maths explanation for final 2 marks, e.g. K_a (CH ₃ COOH) = 10 ^{-(4.76)} = 1.74 × 10 ⁻⁵ [H ⁺] = $\sqrt{(1.74 \times 10^{-5}) \times 1)}$ = 4.17 × 10 ⁻³ pH = -log 4.17 × 10 ⁻³ = 2.38 ✓ K_a (CH ₃ SO ₂ OH) = 10 ^{-(-1.90)} = 79.4 [H ⁺] = $\sqrt{(79.4) \times 1}$ = 8.91 pH = -log 8.91 = -0.95 ✓ BOTH pH calcs subsumes 'Student is correct'

H432/03	3
---------	---

Mark Scheme

Question	Answer		AO element	Guidance
(c)	$\begin{array}{c} \overbrace{H_{3}C} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	4	3.1×4	IGNORE any added charges OR dipoles. Marks solely for curly arrows IGNORE any curly arrows on bottom structures (not in boxes): H_3C
	Total	10		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

