Question	Scheme	Marks	AOs		
1(a)	Total mass = $\int_{0}^{15} 10 \left(1 - \frac{x}{25} \right) dx$	M1	2.1		
	$= \left[10x - \frac{x^2}{5}\right]_0^{15}$		1.1b		
	$=150-\frac{225}{5}=105$ (kg) *		1.1b		
		(3)			
(b)	Taking moments about the base: $\int_{0}^{15} 10x \left(1 - \frac{x}{25}\right) dx$	M1	3.4		
	$= \begin{bmatrix} 5x^2 & \frac{2}{15}x^3 \end{bmatrix}_{0}^{15} (675)$	A1	1.1b		
	$\Rightarrow 105d = 675$	M1	3.4		
	$d = 6.43 \text{ (m)} 6\frac{3}{7} \text{ (m)}$	A1	1.1b		
		(4)			
		(7 n	narks)		
Notes:					
	integration (usual rules)				
	rrect integration e limits and show sufficient working to justify given answer				
 (b) M1: Use the model to find the moment about the base (usual rules for integration) A1: Correct integration M1: Use the model to complete the moments equation Paguire 105 and their 675 used correctly. 					
-	uire 105 and their 675 used correctly 3 or better				

Paper 4F: Further Mechanics 2 Mark Scheme

Question	Scheme	Marks	AOs
2	$\langle - 4a \rangle$		
	4a $3a$ V V R mg mg		
	Complete overall strategy	M1	3.1b
	Resolve vertically	M1	3.3
	$mg + F\cos\theta = R\sin\theta$	A1	1.1b
	Horizontal equation of motion	M1	3.3
	$mr\omega^2 = R\cos\theta + F\sin\theta$	A1	1.1b
	Use of limiting friction since maximum ω	M1	3.3
	Substitute for trig ratios: $\frac{3a\omega^2}{2g} = \frac{9}{2}$	M1	1.1b
	Maximum $\omega = \sqrt{\frac{3g}{a}}$	A1	1.1b
	1	(8 n	narks)
Notes: M1: Ove	rall strategy to form equation in ω only e.g.		
cons M1: Need	sider vertical and horizontal motion and limiting friction ds all 3 terms. Condone sign errors and sin/cos confusion rect unsimplified equation		

- M1: Needs all 3 terms. Condone sign errors and sin/cos confusion
- A1: Correct unsimplified equation
- M1: Seen or implied
- M1: Substitute to achieve equation in a, ω and g only
- A1: Or equivalent exact form

3(a) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Question		Scheme		Marks	AOs
(b) $ \begin{array}{ c c c c c c c c } \hline cylinder & 4\pi a^2h & \frac{h}{2} \\ \hline hemisphere & \frac{2}{3}\pi a^3 & \frac{3}{8}a \\ \hline V & 4\pi a^2h - \frac{2}{3}\pi a^2 & d \\ \hline Mass ratios & B1 & 1.2 \\ \hline Mass ratios & B1 & 1.2 \\ \hline Correct distances & B1 & 1.2 \\ \hline Moments about a diameter through O & M1 & 2.1 \\ \hline 4\pi a^2h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d & A1 & 1.1b \\ \hline d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} * & A1^* & 2.2a \\ \hline & & (5) \\ \hline \\ h = 5a \Rightarrow d = 2.573a & B1 & 1.1b \\ \hline About to topple so c of m above tipping point & M1 & 2.2a \\ \hline & & & & & & \\ \hline h = 5a \Rightarrow d = 2.573.a & B1 & 1.1b \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline \end{array} $	3(a)		mass	c of m from <i>Q</i>		
$\frac{V}{4\pi a^2 h - \frac{2}{3}\pi a^3} d$ Mass ratios B1 1.2 Correct distances B1 1.2 Moments about a diameter through O M1 2.1 $4\pi a^2 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d$ A1 1.1b $d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} *$ A1* 2.2a (b) (c) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		cylinder				
(b) $h = 5a \Rightarrow d = 2.573a$ $h = 3a \Rightarrow 1.2$ $h = 5a \Rightarrow d = 2.573a$		hemisphere	5			
Correct distancesB11.2Moments about a diameter through OM12.1 $4\pi a^2 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d$ A11.1b $d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} *$ A1*2.2a(b)(5)(5) $h = 5a \Rightarrow d = 2.573a$ B11.1bAbout to topple so c of m above tipping pointM12.2a $\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1ft1.1b $\phi = 39.5^\circ$ or 0.689 radsA11.1b		V	$4\pi a^2 h - \frac{2}{3}\pi a^3$	d		
Moments about a diameter through O M1 2.1 $4\pi a^2 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a = 2\pi a^2 \left(2h - \frac{1}{3}a\right) \times d$ A1 1.1b $d = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} *$ A1* 2.2a (b) (5) (5) $h = 5a \Rightarrow d = 2.573a$ B1 1.1b About to topple so c of m above tipping point M1 2.2a $\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1ft 1.1b $\phi = 39.5^\circ$ or 0.689 rads A1 1.1b		Mass ratios			B1	1.2
$\frac{4\pi a^{2}h \times \frac{h}{2} - \frac{2}{3}\pi a^{3} \times \frac{3}{8}a = 2\pi a^{2} \left(2h - \frac{1}{3}a\right) \times d \qquad A1 \qquad 1.1b$ $\frac{d = \frac{h^{2} - \frac{a^{2}}{8}}{2h - \frac{a}{3}} = \frac{3(8h^{2} - a^{2})}{8(6h - a)} \times A1^{*} \qquad 2.2a$ (b) (b) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		Correct distances			B1	1.2
(b) $ \frac{d}{d} = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} * A1* 2.2a $ (b) $ \frac{d}{d} = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a^2)}{8(6h - a)} * A1* 2.2a $ (b) $ \frac{h = 5a \Rightarrow d = 2.573a}{5a} = \frac{1.1b}{2a} $ $ \frac{h = 5a \Rightarrow d = 2.573a}{5a - 2.573a} = B1 1.1b $ About to topple so c of m above tipping point M1 2.2a $ \frac{h = 5a \Rightarrow d = 2.573a}{5a - 2.573a} = A1ft 1.1b $ $ \frac{h = 5a \Rightarrow d = 2.573a}{6a - 2.573a} = A1ft 1.1b $ $ \frac{h = 5a \Rightarrow d = 2.573a}{6a - 2.573a} = A1ft 1.1b $ $ \frac{h = 5a \Rightarrow d = 2.573a}{6a - 2.573a} = A1ft 1.1b $		Moments about a diam	eter through O		M1	2.1
(b) $h = 5a \Rightarrow d = 2.573a$ $h = 5a \Rightarrow d = 2$		$4\pi a^2 h \times \frac{h}{2} - \frac{2}{3}\pi a^3 \times \frac{3}{8}a$	$=2\pi a^2 \left(2h-\frac{1}{3}a\right) \times d$		A1	1.1b
(b) $ \begin{array}{c c} \hline & & & \\ \hline & &$		d	$h = \frac{h^2 - \frac{a^2}{8}}{2h - \frac{a}{3}} = \frac{3(8h^2 - a)}{8(6h - a)}$	$\left(\frac{a^2}{a}\right)$ *	A1*	2.2a
$h = 5a \Rightarrow d = 2.573a$ $h = 5a \Rightarrow d = 2.573.$					(5)	
About to topple so c of m above tipping pointM12.2a $\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1ft1.1b $\phi = 39.5^{\circ}$ or 0.689 radsA11.1b(4)	(b)	-	5a Ø 2.43a	_		
$\Rightarrow \tan \phi = \frac{2a}{5a - 2.573a}$ A1ft 1.1b $\phi = 39.5^{\circ} \text{ or } 0.689 \text{ rads}$ A1 1.1b (4)		$h = 5a \Longrightarrow d = 2.573d$	1		B1	1.1b
$\phi = 39.5^{\circ} \text{ or } 0.689 \text{ rads} \qquad A1 \qquad 1.1b$ (4)				t	M1	2.2a
(4)		$\Rightarrow \tan \phi$	$=\frac{2a}{5a-2.573a}$		A1ft	1.1b
			$\phi = 39.$	5° or 0.689 rads		1.1b
					1	norles

Question 3 notes:

- **(a)**
- **B1:** Correct mass ratios
- **B1:** Correct distances
- M1: All three terms & dimensionally correct. Could use a parallel axis but final answer must be for the distance from *O*
- A1: Correct unsimplified equation
- A1*: Deduce the given answer. Their working must make it clear how they reached their answer

(b)

- **B1:** Distance of com from base
- M1: Condone tan the wrong way up
- A1ft: Correct unsimplified expression for trig ratio for ϕ following their d
- A1: 39.5° or 0.689 rads

Question	Scheme	Marks	AOs	
4(a)	Equation of motion: $1800 - 2v^2 = 500a$ (when seen)	B1	2.1	
	Select form for <i>a</i> : $=500 \frac{dv}{dt}$	M1	2.5	
	$\int \frac{2}{500} dt = \int \frac{1}{900 - v^2} dv \frac{1}{60} \int \frac{1}{30 + v} \frac{1}{30 - v} dv$	M1	2.1	
	$\frac{t}{250} = \frac{1}{60} \ln (30 + v) - \frac{1}{60} \ln (30 - v) (+C)$	A1	1.1b	
	$T = \frac{25}{6} \ln \left(\frac{30 + 10}{30 - 10} \right) = \frac{25}{6} \ln 2 *$	M1 A1*	2.1 2.2a	
		(6)		
(b)	Equation of motion: $500v \frac{dv}{dx} = 1800 - 2v^2$	M1	2.5	
	$\int \frac{500v}{1800 - 2v^2} dv = \int 1 dx$	M1	2.1	
	$-125\ln(1800-2v^2) = x \ (+C)$	A1	1.1b	
	Use boundary conditions: $x = -125 \ln 1600 + 125 \ln 1800$	M1	2.1	
	$x = 125 \ln \frac{9}{8} (m)$ *	A1*	2.2a	
		(5)		
		(11 n	narks)	
Notes: (a) B1: All three terms & dimensionally correct M1: Use of correct form for acceleration to give equation in v, t only M1: Separate variables and integrate A1: Condone missing C M1: Use boundary conditions correctly A1*: Show sufficient working to justify given answer and a 'statement' that the required result has been achieved				
M1: Sepa A1: Con M1: Extr	 Correct form of acceleration in the equation of motion to give equation in v, x only Separate variables and integrate Condone missing C Extract and use boundary conditions 			

A1*: Show sufficient working to justify given answer and a 'statement' that the required result has been achieved

Question		Scheme		Marks	AOs
5(a)		Mass	From AD		
	Rectangle	8 <i>a</i> ²	a		
	Semicircle	$\frac{1}{2}\pi a^2$	$\frac{4a}{3\pi}$		
	Sign	$a^2\left(8-\frac{\pi}{2}\right)$	h		
	Mass ratios			B1	1.2
	Moments about AD	-		M1	2.1
	$a^2\left(8-\frac{\pi}{2}\right)h=8a^2$	$\times a - \frac{1}{2}\pi a^2 \times \frac{4a}{3\pi} \bigg(=$	$8a^3 - \frac{2}{3}a^3 = \frac{22}{3}a^3$	A1	1.1b
	$\Rightarrow h = \frac{2}{3}$	$\frac{2}{3}a \div \left(8 - \frac{\pi}{2}\right) = \frac{4}{3(1)}$	$\frac{44a}{6-\pi}$ *	A1*	2.2a
				(4)	
(b)	Moments about A $2aT = \frac{44a}{3(16 - \pi)}W$			M1	3.1b
	$T = \frac{hW}{2a}$	$=\frac{22W}{3(16-\pi)}$		A1	1.1b
				(2)	
(c)					
	Take moments about A	<i>B</i> to find distance o	f com from AB	M1	3.1b
	$8a^2 \times 2a - \frac{1}{2}\pi a^2 \times d = \left($	$8-\frac{1}{2}\pi\Big)a^2 \times v$		A1	1.1b
		$v = \frac{32a - \pi}{16 - \pi}$	<u>d</u>	A1	1.1b
	Correct trig for the give			M1	3.1b
	$\tan \alpha = \frac{11}{18} = \frac{h}{v} = \frac{44}{3(32a)}$	$\left(\frac{a}{-\pi d}\right)$		A1ft	1.1b
	$(24a = 32a - \pi d, 8a)$	$=\pi d$) $d=\frac{8a}{\pi}$		A1	1.1b
				(6)	
				(12 n	narks)

Quest	tion 5 notes:
(a)	
B1:	Correct mass ratios
M1:	Need all three terms, must be dimensionally correct
A1:	Correct unsimplified equation
A1*:	Show sufficient working to justify the given answer and a 'statement' that the required result has been achieved
(b)	
M1:	Could also take moments about B or about the c.o.m. and use
A1:	CSO
(c)	
M1:	All terms and dimensionally correct
A1:	Correct unsimplified equation
A1:	Or equivalent
M1:	Condone tan the wrong way up
A1:	Equation in a and d; follow through on their v
A1:	cao

Question	Scheme	Marks	AOs
6(a)	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		
	Conservation of energy	M1	2.1
	$\frac{1}{2}mv^2 + mga(1 - \cos\theta) = \frac{1}{2}m\left(\frac{7}{2}ga\right)$	A1	1.1b
	$v^2 = ga\left(\frac{3}{2} + 2\cos\theta\right) *$	A1*	2.2a
		(3)	
(b)	Resolve parallel to <i>OB</i> and use $\frac{mv^2}{a}$	M1	3.1b
	$R - mg\cos\theta = \frac{mv^2}{a}$	A1	1.1b
	Use R=0 $g\cos\theta = -\frac{v^2}{a}$	M1	3.1b
	Solve for $\theta \implies g\cos\theta = g\left(\frac{3}{2} 2\cos\theta\right)$	M1	1.1b
	$\theta = 120^{\circ}$	A1	1.1b
		(5)	
	Any appropriate comment e.g. the hoop is unlikely to be smooth	B1	3.5b
(c)		(1)	

Ques	tion	Scheme	Marks	AOs	
6(d	$\mathbf{6(d)} \qquad \text{At rest} \implies v = 0$		M1	3.1b	
		$\Rightarrow \cos\theta = \frac{3}{4}$	A1	1.1b	
		Acceleration is tangential	M1	3.1b	
		Magnitude $ g\cos(\theta - 90) = 6.48 \text{ m s}^{-2} \text{ or } \frac{\sqrt{7}}{4}g$	A1	1.1b	
		At $\left(\cos^{-1}\left(-\frac{3}{4}\right)-90=\right)$ 48.6° to the downward vertical	A1	1.1b	
			(5)		
			(14 n	narks)	
Quest (a)	tion 6	o notes:			
A1: A1*: (b) M1: A1:	Corr Show result Reso Corr	All terms required. Must be dimensionally correct Correct unsimplified equation Show sufficient working to justify the given answer and a 'statement' that the required result has been achieved Resolve parallel to <i>OB</i> Correct equation			
M1: M1:		R=0 seen or implied e for θ			
A1:	Acce	ept $\frac{2\pi}{3}$			
(c) B1:					
(d) M1: A1: M1: A1: A1:	v = 0 seen or implied Correct equation in θ Correct direction for acceleration Accept 6.48, 6.5 or exact in g Accept 0.848 (radians)				

Question	Scheme	Marks	AOs
7(a)			
	A 20 N 50 N B		
	$T_A = \frac{20e}{2}, \ T_B = \frac{50(2-e)}{2} e$	M1	3.1a
	In equilibrium $T_A = T_B$, $10e = 25(2-e)$	M1	3.1a
	$(35e = 50), e = \frac{10}{7}$	A1	1.1b
	Equation of motion for <i>P</i> when distance <i>x</i> from equilibrium position towards <i>B</i> :	M1	3.1a
	$3.5\ddot{x} = T_B - T_A = \frac{50(2 - e - x)}{2} - \frac{20(e + x)}{2}$	A1 A1	1.1b 1.1b
	$=\frac{50\left(\frac{4}{7}-x\right)}{2}-\frac{20\left(\frac{10}{7}+x\right)}{2}$		
	$\Rightarrow 3.5\ddot{x} = 35x, \ddot{x} = -10x$ and hence SHM about the equilibrium position	A1	3.2a
		(7)	
(b)	Amplitude $= 2 - \frac{10}{7} = \frac{4}{7}$	B1 ft	2.2a
	Use of max speed = $a \omega$	M1	1.1b
	$=\frac{4}{7}\sqrt{10}=1.81 \ (\mathrm{m \ s^{-1}})$	A1 ft	1.1b
		(3)	

Ques	tion	Scheme	Marks	AOs
7(0	:)	Nearer to A than to B: $x < -\frac{3}{7}$	B1	3.1a
		Solve for $\sqrt{10t}$: $\cos \sqrt{10t} = -\frac{3}{4}$, $\sqrt{10t} = 2.418$	M1	3.1a
		Length of time: $\frac{2}{\sqrt{10}}(\pi - 2.418)$	M1	1.1b
		0.457 (seconds)	A1	1.1b
		Alternative: $\frac{3.864 - 2.419}{\sqrt{10}} = 0.457$		
		Alternative: $x = \frac{4}{7} \sin \sqrt{10}t$ $\frac{3}{7} \implies \sqrt{10}t = 0.8481 \text{ or } \sqrt{10}t = 2.29353$		
		$t_1 = 0.2682, \ t_2 = 0.72527$		
		\Rightarrow time = 0.457 (seconds)		
			(4)	• •
Notes			(14 n	narks)
(a)				
M1:	Use	of $T = \frac{\lambda x}{a}$		
M1: A1: M1: A1:	cao Cone Corr Equa	endent on the preceding M1. Equate their tensions done sign error ect unsimplified equation in e and x A1A1 ation with one error A1A0 working to justify conclusion that it is SHM about the equilibrium po	sition	
(b) B1ft: M1: A1ft:	Cor	n or implied. Follow their e rect method for max. speed or better. Follow their a, ω		
(c) B1: M1: M1: A1:	Seen or implied Use of $x = a \cos wt$ Correct strategy for the required interval 0.457 or better			