

Mark Scheme (Results)

January 2016

International GCSE Physics (4PH0) Paper 2P

Pearson Edexcel Certificates in Physics (KPH0) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016 Publications Code UG043304 All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B – force;		1
(b)	B – energy;		1
(c)	A - gravitational potential energy;		1
(d)	D – the vertical forces on it are balanced;		1

	uesti numb		Answer	Notes	Marks
2	(a)		10 000; N;	allow 9800, 9810, 10 ⁴ allow "newton(s)" marks are independent	2
	(b)	(i)	density = mass / volume;	allow abbreviation, e.g. $\rho = m/V$, d = m/V or rearrangements	1
		(ii)	substitution OR rearrangement; evaluation;	award if either seen in working	2
			e.g. 2300 = 1000/volume = 0.43 (m ³)	allow 0.4, 0.434, 0.435, 0.4347 condone 0.44	
	(c)	(i)	bar chart / bar graph;	condone histogram	1
		(ii)	 any 1 from: MP1.idea that (density) data is discontinuous; MP2.materials have non-numerical values / are not quantifiable; MP3.material types identified as categories; MP4.idea that a line graph would indicate continuity; 	discrete, categoric, non/not continuous	1
		(iii)	cork is less dense OR water is denser; cork 25%, ¼ as dense OR water four times denser;	accept correct calculation of <u>both</u> densities for 2 marks	2

Question number		Answer		Notes	Marks
3 (a)			more than one line to a box does not score	2	
	state of matter		particles		
	solid		gether, moving about slide past one another		
	liquid		t, moving quickly d at random		
	gas		ether, vibrating about fixed positions		
(b) (i)	18; 192;				2
		Temperature in °C	Temperature in kelvin		
	room temperature	18	291		
	triple point of ethyne	-81	192		
(ii)	decreases / OW	TTE;		ignore "molecules slow down"	1
(iii)	remains constar	nt / no change ,	/ nothing;		1

Question number	Answer	Notes	Marks
4 (a) (i)	MP1. (due to) friction (between car and ground/air);	allow idea of materials rubbing	2
	MP2. idea of <u>electron</u> transfer;	allow 'scraped off' for transfer ignore "charge", "static" reject (for MP2 mark) protons moving / positive electrons	
(ii)	idea of an insulator OR insulating material (between car and ground);	e.g. rubber tyre allow RA e.g. `tyre is a non-conductor'	1
		ignore comments relating to charge being unable to move e.g. 'car not earthed'	
(b) (i)	(otherwise there would be a risk of) shock / spark / fire / explosion;	ignore "to avoid travel sickness"	1
(ii)	any 2 from:		2
	MP1. metal (strap) is a conductor;		
	MP2. (hence) idea of current / charge moving (in the strap/metal/wire);	reject references to positive charge/protons	
	MP3. (electrons flow) between earth/ground/road and car;	allow ideas of "earthing" or "grounding" e.g. "It (charge/car) is earthed by the strap"	

Question number	Answer	Notes	Marks
5 (a)	idea that higher frequency gives higher pitch;	allow reverse argument condone idea of proportionality / linearity	1
(b) (i)	(wave) speed = frequency × wavelength	allow abbreviation, e.g. $v = f \times \lambda$ or rearrangements	1
(ii)	substitution into correctly rearranged equation; evaluation; e.g.		2
	(v =) 340 / 160 (v =) 2.1 (m)	allow 2.125, 2.12, 2.13 or 2 (if supported)	
(c) (i)	straight line of best fit drawn within indicated area; speed of sound in m/s	line does not need to be extended beyond data range for this mark	1
(ii)	line of best fit extended to 20°C; student's own value from graph ± half a square;		2

(d)	any 2 from: MP1.speed (of sound) decreases (with temperature); MP2.frequency is constant;	allow `sound slows down' ignore references to particle speed	2
	MP3.so wavelength decreases (with temperature);	allow λ is smaller	

Question number	Answer	Notes	Marks
6 (a)	idea that background activity should be subtracted (from each reading);		1
(b)	time taken; and either for amount of (radioactive) nuclei / atoms / isotope to halve;	allow "how long it takes" allow • decay by half • decay to half	2
	OR for (radio)activity to halve	ignore particles / molecules, "breakdown", "reactivity" reject if implies a single nucleus/atom	
(c) (i)	evidence of use of graph; 56 ± 3 (s);	e.g. lines to two correct points on graph or appropriate subtraction shown in working	2
(ii)	 any 1 from: MP1.idea of {more accurate / smoother} curve; MP2.idea that activity changes quickly; MP3.idea that decay takes very little time; 	allow more points to plot on graph decays quickly (sample has) short half life	1

Question number	Answer	Notes	Marks
7 (a)	 MP1. at least one straight, vertical central field line; MP2. any field line drawn circling the wire / at least one peripheral field loop; MP3. field directions correct and consistent throughout and shown on at least two lines; 	ignore breaking of field lines as they pass through the centre of the coil by eye condone spiral drawn round wire	3
(b)	any 3 from: MP1. idea of magnetic fields interacting; MP2. idea of (magnetic) attraction or repulsion;	allow field lines crossing ignore 'cutting' reject mention of electrostatic force or charge	3
	MP3. reversing current reverses direction of magnetic field / force;		
	MP4. some comparison with magnets, e.g. like poles repel, unlike poles attract;	mention of having `poles'	

	Quest numl		Answer	Notes	Marks
8	(a)	(i)	385 (J);		1
		(ii)	substitution into E=QV;	reverse calculation e.g. calculating a voltage or charge gains 1 mark max.	2
			evaluation to at least 2 s.f.;	if no other mark given allow 1 mark for 10 ⁶ or 1000000 seen in working	
			e.g. (E =) 385 × 180 000 (E =) 69 000 000 (J) / 69 (MJ)	allow ecf from 8(a)(i) value	
		(iii)	MP1. idea of <u>energy</u> wasted;	allow not 100% efficient, <u>energy</u> lost	2
			MP2. appropriate mechanism;	e.g. heat in wires	
8	(b)	(i)	charge = current × time;	allow abbreviations e.g. $Q = I \times t$ or rearrangements	1
		(ii)	substitution; rearrangement; evaluation;	ignore not converting time to seconds until evaluation	3
			e.g. $180\ 000 = \text{current} \times (110 \times 60)$ (current =) $180\ 000 / (110 \times 60)$ (current =) $27\ (A)$	allow 27.3, 27.27	
				1600, 1640, 1636 etc. gain 2 marks	
				if no other mark given allow 1 mark for 60 seen anywhere in working (attempt to convert to seconds)	

Question number	Answer	Notes	Marks
9	any 5 from: MP1.increased voltage (with step up transformer);	allow `steps up voltage'	5
	MP2.(therefore) reduced current;		
	MP3.current linked to heating;		
	MP4. (therefore) less {energy / power} is lost / wasted (in transmission);		
	MP5.reference to P=I ² R equation;	allow P=IV if clear that V is the voltage drop across the cables.	
	MP6.example of an efficiency enhancing detail of cables;	e.g. good conductor, low resistance, large diameter	
	MP7.example of an efficiency enhancing detail of transformer construction;	e.g. low resistance coils, coils wrapped on top of each other, soft iron core, laminated core	
	MP8.step down transformer reduces voltage / increases current;	allow 'steps down voltage'	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL