Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2015

Chemistry

CHEM1

Unit 1 Foundation Chemistry

Friday 22 May 2015 9.00 am to 10.15 am

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator.

Time allowed

• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculator, where appropriate.
- The Periodic Table/Data Sheet is provided as an insert.
- Your answers to the questions in **Section B** should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use scientific terminology accurately.

Advice

 You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B.

Examiner's Initials Question Mark 1 2 3 4 5 6 7 TOTAL

Section A

	Answer all questions in the spaces provided.	
1	This question is about the elements in Period 3 of the Periodic Table.	
1 (a)	State the element in Period 3 that has the highest melting point. Explain your answer.	
		[3 marks]
	Element	
	Explanation	
1 (b)	State the element in Period 3 that has the highest first ionisation energy. Explain your answer.	
		[3 marks]
	Element	
	Explanation	
1 (c)	Suggest the element in Period 3 that has the highest electronegativity value	le. [1 mark]

1 (d)	Chlorine is a Period 3 element. Chlorine forms the molecules ClF ₃ and CCl ₂							
1 (d) (i)	Use your understanding of electron pair repulsion to draw the shape of ClF ₃ and the shape of CCl ₂ Include any lone pairs of electrons that influence the shape. [2 marks]							
	Shape of ClF ₃ Shape	of CCl ₂						
1 (d) (ii)	Name the shape of CCl ₂	[1 mark]						
1 (d) (iii)	Write an equation to show the formation of one mole of	f ClF ₃ from its elements. [1 mark]						
	Turn over for the next question	1	11					

2		Tellurium is	s the ele	ment w	ith atom	ic numb	er of 52			
2	(a)	Using infor tellurium.	mation f	rom the	e Period	ic Table,	complete	e the elect	tron configu	ration of
										[1 mark]
		[Kr]								
	4. \	-							4	
2	(b)	The mass	spectrur	n of a s	sample o			own in Fig	ure 1.	
						Figure '	1 			
							_			
							\perp		_	
	Rela	tivo					\perp		_	
		idance			_		\perp		_	
					_		+		_	
					_		\perp		_	
		•	124	125	126	127 <i>m</i> / <i>z</i> ratio	128	129	130	
2	(b) (i)	Use Figure	e 1 to ca	lculate	the rela			of this sa	mple of tell	urium.
		Give your a	answer t	o one c	lecimal _l	olace.				[3 marks]
2	(b) (ii)	Suggest w the relative							ample to be	different from
					,					[1 mark]

2 (c)	Write an equation for the reaction that occurs when a tellurium ion hits the detector. [1 mark]
2 (d)	State the <i>m</i> / <i>z</i> value of the ions that produce the biggest current at the detector when the spectrum in Figure 1 is recorded. Give a reason for your answer.
	[2 marks]
	m/z value Reason
2 (e)	The mass spectrum of tellurium also has a small peak at <i>m</i> / <i>z</i> = 64
	Explain the existence of this peak. [2 marks]
2 (f)	Predict whether the atomic radius of ¹²⁴ Te is larger than, smaller than or the same as the atomic radius of ¹³⁰ Te
	Explain your answer. [2 marks]
	Atomic radius of ¹²⁴ Te compared to ¹³⁰ Te
	Explanation

12

3

3	Silicon dioxide (SiO ₂) has a crystal structure similar to diamond.		
3 (a)	Give the name of the type of crystal structure shown by silicon dioxide.	ark]	
3 (b)	Suggest why silicon dioxide does not conduct electricity when molten.	ark]	
		••••	
3 (c)	Silicon dioxide reacts with hydrofluoric acid (HF) to produce hexafluorosilicic acid (H_2SiF_6) and one other substance.		
	Write an equation for this reaction.	ark]	

4	A sample of hydrated nickel sulfate (NiSO ₄ . x H ₂ O) with a mass of 2.287 g was heated to remove all water of crystallisation. The solid remaining had a mass of 1.344 g.	
4 (a)	Calculate the value of the integer <i>x</i> . Show your working. [4 marks]	
	[+IIIII.4]	
4 (b)	Suggest how a student doing this experiment could check that all the water had been removed.	
	[2 marks]	
		6
	Turn over for the next question	

5 A hydrogen peroxide molecule can be represented by the structure shown.

5 (a) Suggest a value for the H–O–O bond angle.

[1 mark]

- **5 (b)** Hydrogen peroxide dissolves in water.
- **5 (b) (i)** State the strongest type of interaction that occurs between molecules of hydrogen peroxide and water.

[1 mark]

5 (b) (ii) Draw a diagram to show how one molecule of hydrogen peroxide interacts with one molecule of water.Include all lone pairs and partial charges in your diagram.

[3 marks]

5 (c)	Explain, in terms of electronegativity, why the boiling point of H ₂ S ₂ is lower than H ₂ O ₂ . [2 marks]

7

Turn over for the next question

6	Central heating fuel, obtained by the fractional distillation of crude oil, contains saturated hydrocarbons with the molecular formula $C_{\rm 16}H_{\rm 34}$
6 (a)	Give the meaning of the terms saturated and hydrocarbon as applied to saturated hydrocarbons. [2 marks]
	Saturated
	Hydrocarbon
6 (b)	If the boiler for a central heating system is faulty, a poisonous gas may be produced during the combustion of $\rm C_{16}H_{34}$
	Write an equation for the reaction that forms this poisonous gas and one other product only. [1 mark]
6 (c)	Explain why the sulfur compounds found in crude oil should be removed from the fractions before they are used for central heating fuel. [2 marks]

6	(d)	A hydrocarbon $C_{16}H_{34}$ can be cracked to form C_8H_{18} , ethene and propene.	
6	(d) (i)	Write an equation to show this cracking reaction.	[1 mark]
6	(d) (ii)	Suggest one important substance manufactured on a large scale from propene.	[1 mark]
6	(d) (iii)	Draw the displayed formula of the functional group isomer of propene.	[1 mark]
6	(e)	There are many structural isomers with the molecular formula C_8H_{18} Draw the structure of 2,3,3-trimethylpentane.	[1 mark]
		Question 6 continues on the next page	

WMP/Jun15/CHEM1

6 (f) A compound C_8H_{18} reacts with chlorine to give several haloalkanes.

Give the IUPAC name of the following haloalkane.

[1 mark]

.....

10

[5 marks]

Section B

Answer **all** questions in the spaces provided.

- 7 Some airbags in cars contain sodium azide (NaN₃).
- **7 (a)** Sodium azide is made by reacting dinitrogen monoxide gas with sodium amide (NaNH₂) as shown by the equation.

$$2NaNH_2 + N_2O \longrightarrow NaN_3 + NaOH + NH_3$$

Calculate the mass of sodium amide needed to obtain 550 g of sodium azide, assuming there is a 95.0% yield of sodium azide.

Give your answer to 3 significant figures.

	-	-
 	 	•••
		•••

Question 7 continues on the next page

7 (b)	If a car is involved in a serious collision, the sodium azide decomposes to form and nitrogen as shown in the equation.	sodium
	$2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$	
	The nitrogen produced then inflates the airbag to a volume of 7.50×10^{-2} m ³ a pressure of 150 kPa and temperature of 35 °C.	t a
	Calculate the minimum mass of sodium azide that must decompose. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	[6 marks]

	Question 7 continues on the next page
	Reason for high melting point
	Type of bonding
	Suggest why its melting point is high. [3 marks]
	Predict the type of bonding in a crystal of sodium azide.
7 (d)	Sodium azide has a high melting point.
	$\dots HNO_2 \longrightarrow \dots HNO_3 + \dots NO + \dots H_2O$
	Balance the following equation for this reaction. [1 mark]
7 (c) (ii)	Nitrous acid decomposes on heating.
	Calculate the concentration, in mol dm ⁻³ , of the nitrous acid used. [3 marks]
7 (c) (i)	A 500 cm ³ volume of the nitrous acid solution was used to destroy completely 150 g of the sodium azide.
	$2NaN_3 + 2HNO_2 + 2HCl \longrightarrow 3N_2 + 2NO + 2NaCl + 2H_2O$
7 (c)	Sodium azide is toxic. It can be destroyed by reaction with an acidified solution of nitrous acid (HNO ₂) as shown in the equation.

7 (e)	The azide ion has the formula N ₃ ⁻	
7 (e) (i)	The azide ion can be represented as $N \equiv N - N^-$ One of these bonds is a co-ordinate bond.	
	On the following diagram, draw an arrowhead on one of the bonds to represent the direction of donation of the lone pair in the co-ordinate bond.	
	[1 mark]	
	$N \equiv N - N^-$	
7 (e) (ii)	Give the formula of a molecule that has the same number of electrons as the azide ion. [1 mark]	
7 (e) (iii)	Which is the correct formula of magnesium azide? Tick (✓) one box. [1 mark]	
	Mg ₃ N	
	MgN	
	MgN ₆	
	Mg_3N_2	
	END OF QUESTIONS	21

Copyright @ 2015 AQA and its licensors. All rights reserved.