

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4751

Introduction to Advanced Mathematics (C1)

6 JUNE 2006

Tuesday

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- There is an **insert** for use in Question **13**.
- You are **not** permitted to use a calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

a calculator in this paper

2

Section A (36 marks)

1 The volume of a cone is given by the formula $V = \frac{1}{3}\pi r^2 h$. Make *r* the subject of this formula.

[3]

- 2 One root of the equation $x^3 + ax^2 + 7 = 0$ is x = -2. Find the value of *a*. [2]
- 3 A line has equation 3x + 2y = 6. Find the equation of the line parallel to this which passes through the point (2, 10). [3]
- 4 In each of the following cases choose one of the statements

$$P \Rightarrow Q \qquad P \Leftrightarrow Q \qquad P \Leftarrow Q$$

to describe the complete relationship between P and Q.

(i) P:
$$x^2 + x - 2 = 0$$

Q: $x = 1$ [1]

(ii) P:
$$y^3 > 1$$

Q: $y > 1$ [1]

5 Find the coordinates of the point of intersection of the lines y = 3x + 1 and x + 3y = 6. [3]

- 6 Solve the inequality $x^2 + 2x < 3$. [4]
- 7 (i) Simplify $6\sqrt{2} \times 5\sqrt{3} \sqrt{24}$. [2]

(ii) Express
$$(2-3\sqrt{5})^2$$
 in the form $a+b\sqrt{5}$, where a and b are integers. [3]

8 Calculate ${}^{6}C_{3}$.

Find the coefficient of x^3 in the expansion of $(1 - 2x)^6$. [4]

9 Simplify the following.

(i)
$$\frac{16^{\frac{1}{2}}}{81^{\frac{3}{4}}}$$
 [2]

(ii)
$$\frac{12(a^3b^2c)^4}{4a^2c^6}$$
 [3]

3

10 Find the coordinates of the points of intersection of the circle $x^2 + y^2 = 25$ and the line y = 3x. Give your answers in surd form. [5]

Section B (36 marks)

11	A(9,8), $B(5,0)$ and $C(3,1)$ are three points.	
	(i) Show that AB and BC are perpendicular.	[3]
	(ii) Find the equation of the circle with AC as diameter. You need not simplify your answer.	
	Show that B lies on this circle.	[6]
	(iii) BD is a diameter of the circle. Find the coordinates of D.	[3]
12	You are given that $f(x) = x^3 + 9x^2 + 20x + 12$.	
	(i) Show that $x = -2$ is a root of $f(x) = 0$.	[2]
	(ii) Divide $f(x)$ by $x + 6$.	[2]
	(iii) Express $f(x)$ in fully factorised form.	[2]
	(iv) Sketch the graph of $y = f(x)$.	[3]
	(v) Solve the equation $f(x) = 12$.	[3]

[Question 13 is printed overleaf.]

13 Answer the whole of this question on the insert provided.

The insert shows the graph of $y = \frac{1}{x}$, $x \neq 0$.

- (i) Use the graph to find approximate roots of the equation $\frac{1}{x} = 2x + 3$, showing your method clearly. [3]
- (ii) Rearrange the equation $\frac{1}{x} = 2x + 3$ to form a quadratic equation. Solve the resulting equation, leaving your answers in the form $\frac{p \pm \sqrt{q}}{r}$. [5]
- (iii) Draw the graph of $y = \frac{1}{x} + 2$, $x \neq 0$, on the grid used for part (i). [2]
- (iv) Write down the values of x which satisfy the equation $\frac{1}{x} + 2 = 2x + 3$. [2]

Candidate Name	Centre Number	Candidate Number	OCR
			RECOGNISING ACHIEVEMENT

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

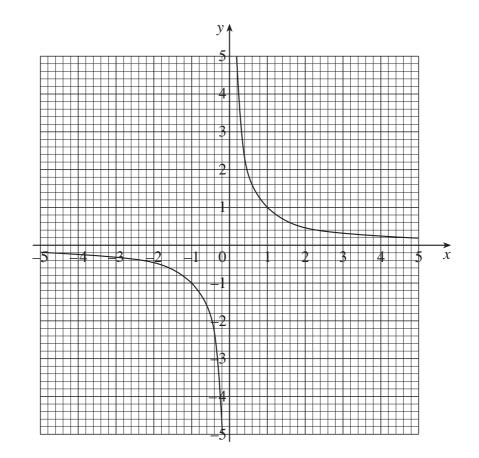
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

Introduction to Advanced Mathematics (C1) INSERT

Tuesday

6 JUNE 2006


Afternoon 1 h

1 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

- This **insert** should be used in Question **13**.
- Write your name, centre number and candidate number in the spaces provided at the top of this page and attach it to your answer booklet.

13 (i) and (iii)

(ii)	
(iv)	

.....