$A Q A B$

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

Level 2 Certificate FURTHER MATHEMATICS

Paper 1 Non-Calculator

Tuesday 19 June 2018

Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- mathematical instruments.

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

For Examiner's Use	
Pages	Mark
3	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
TOTAL	

Formulae Sheet

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Area of triangle $=\frac{1}{2} a b \sin C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$
Trigonometric Identities $\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \quad \sin ^{2} \theta+\cos ^{2} \theta \equiv 1$

Answer all questions in the spaces provided.
$1 y=\frac{x^{6}}{2}+\frac{x^{4}}{4}$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Simplify your answer.
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question
$2 \quad P$ is the point $(-12, b)$
Q is the point $(a, 4)$
R is the point $(6,-2)$
Q is the midpoint of $P R$.
Work out the values of a and b.

$$
a=
$$

\qquad $b=$ \qquad
$3 \quad \mathbf{A}=\left(\begin{array}{rr}2 & 4 \\ 3 & -1\end{array}\right) \quad$ and $\quad \mathbf{B}=\left(\begin{array}{rr}-2 & 6 \\ 2 & 1\end{array}\right)$
Work out AB.

Answer

Turn over for the next question

$4 \quad P=4 x$ and $Q=7 x$
P increases by 25%
Q decreases by 40%
Now, P is 28 greater than Q.
Work out the value of x.
\qquad

Answer \qquad
$5 \quad$ In the expansion and simplification of $(x-3)\left(x^{2}+5 x+k\right)$ the coefficient of x^{2} is equal to the coefficient of x.
k is a constant.
Work out the value of k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

6 A circle has centre $(-1,2)$ and radius 5
Which of these is the equation of the circle?
Tick one box.

$$
\begin{aligned}
& (x+1)^{2}+(y-2)^{2}=5 \\
& (x-1)^{2}+(y+2)^{2}=5
\end{aligned}
$$

$$
(x+1)^{2}+(y-2)^{2}=25
$$

\square
\square
\square

$$
(x-1)^{2}+(y+2)^{2}=25
$$

$7 \quad$ Points A, B and C lie on a circle, centre O.
Angle $A O C=x+75^{\circ}$
Angle $A B C=2 x$

Not drawn accurately

Work out the value of x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad degrees

Turn over for the next question
$8 \quad$ Write $(1+2 \sqrt{5})(4-\sqrt{5})$ in the form $a+b \sqrt{5}$ where a and b are integers.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$9 \quad \mathrm{f}(x)=14-x^{2}$ for all real values of x.
Solve $\mathrm{f}(2 x)=5$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

10 Rearrange $\frac{1}{x y}=4-\frac{3}{y} \quad$ to make x the subject.

Answer \qquad

Turn over for the next question

11 A curve has equation $y=2 x^{2}+3 x-9$
At a point P on the curve, the tangent is parallel to the line $y=4-5 x$
Work out the coordinates of P.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer (\qquad , \qquad)

12 In the diagram,
A is the point $(15,0)$ and B lies on the y-axis.
Angle $A B C=90^{\circ}$ and $\tan \theta=\frac{5}{3}$

Work out the equation of the line $B C$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

13 Solve the simultaneous equations

$$
x y=2 \text { and } y=3 x+5
$$

Do not use trial and improvement.
You must show your working.
\qquad

Answer \qquad

14 Work out the value of $\left(3^{\frac{1}{2}}+3^{\frac{3}{2}}\right)^{2}$
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

15 Here is the graph of $y=3 x-x^{2}$ for values of x from -1 to 4

By drawing a suitable linear graph on the grid, work out approximate solutions to

$$
x^{2}-4 x+2=0
$$

\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

$16 y=\mathrm{f}(x)$ is a cubic curve with a maximum and a minimum stationary point.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+2 x-3$
The y-coordinate of the minimum point is $2 \frac{1}{3}$
The y-coordinate of the maximum point is 13
$(0,4)$ is a point on the curve.
The tangent at $(0,4)$ has a negative gradient.

Sketch the curve on the grid below.
Show the coordinates of the stationary points.

17 (a) Use the factor theorem to show that $(x-2)$ is a factor of $x^{3}+8 x^{2}+5 x-50$
\qquad
\qquad

17 (b) Hence, factorise fully $x^{3}+8 x^{2}+5 x-50$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

$18 D, E, F$ and S are points on a circle.
$R S T$ is a tangent.
The straight line EDT is parallel to $F S$.
$D S=D T$

Prove that $F D$ is parallel to $R S T$.
Use angle DTS as x to help you.
\qquad

Turn over for the next question

19 Write $2 x^{2}-16 x+13$ in the form $a(x+b)^{2}+c \quad$ where a, b and c are integers. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

20 In triangle $A B C$,

$$
A B=6 \sqrt{2} \mathrm{~cm} \text {, angle } A B C=45^{\circ} \text { and angle } A C B=60^{\circ}
$$

Not drawn accurately

Work out the value of x.
Give your answer in the form $a \sqrt{b}$, where a and b are integers.
You must show your working.
\qquad

Answer \qquad cm

END OF QUESTIONS

There are no questions printed on this page

